Skip to main content

Advertisement

Log in

Recent Trends in Diagnostic Biomarkers of Tumor Microenvironment

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

The tumor microenvironment (TME) play critical roles in tumor survival, progression, and metastasis and can be considered potential targets for molecular imaging of cancer. The targeting agents for imaging of TME components (e.g., fibroblasts, mesenchymal stromal cells, immune cells, extracellular matrix, blood vessels) provide a promising strategy to target these biomarkers for the early diagnosis of cancers. Moreover, various cancer types have similar tumor immune microenvironment (TIME) features that targeting those biomarkers and offer clinically translatable molecular imaging of cancers. In this review, we categorize and summarize the components in TME which have been targeted for molecular imaging. Moreover, this review updated the recent progress in targeted imaging of TIME biological molecules by various modalities for the early detection of cancer.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Adapted from ref. [20].

Fig. 2.

Adapted from ref. [29].

Fig. 3.
Fig. 4.
Fig. 5.

Adapted from ref. [95].

Fig. 6.

Adapted from ref. [96].

Fig. 7.

Adapted from ref. [96].

Fig. 8.

Similar content being viewed by others

References

  1. Aghanejad A, Bonab SF, Sepehri M et al (2022) A review on targeting tumor microenvironment: the main paradigm shift in the mAb-based immunotherapy of solid tumors. Int J Biol Macromol 207:592–610

    Article  CAS  PubMed  Google Scholar 

  2. Simon T, Salhia B (2022) Cancer-associated fibroblast subpopulations with diverse and dynamic roles in the tumor microenvironment. Mol Cancer Res 20:183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Asgari D, Aghanejad A, Mojarrad JS (2011) An improved convergent approach for synthesis of erlotinib, a tyrosine kinase inhibitor, via a ring closure reaction of phenyl benzamidine intermediate. Bull Korean Chem Soc 32:909–914

    Article  CAS  Google Scholar 

  4. Nabi PN, Vahidfar N, Tohidkia MR, Hamidi AA, Omidi Y, Aghanejad A (2021) Mucin-1 conjugated polyamidoamine-based nanoparticles for image-guided delivery of gefitinib to breast cancer. Int J Biol Macromol 174:185–197

    Article  CAS  PubMed  Google Scholar 

  5. Byrne NM, Tambe P, Coulter JA (2021) Radiation response in the tumour microenvironment: predictive biomarkers and future perspectives. J Personalized Med 11:53

    Article  Google Scholar 

  6. Duan J, Lv G, Zhu N et al (2022) Multidimensional profiling depicts infiltrating immune cell heterogeneity in the tumor microenvironment of stage IA non-small cell lung cancer. Thoracic Cancer 13:947–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kadkhoda J, Akrami-Hasan-Kohal M, Tohidkia MR, Khaledi S, Davaran S, Aghanejad A (2021) Advances in antibody nanoconjugates for diagnosis and therapy: a review of recent studies and trends. Int J Biol Macromol 185:664–678

    Article  CAS  PubMed  Google Scholar 

  8. Wei R, Liu S, Zhang S, Min L, Zhu S (2020) Cellular and extracellular components in tumor microenvironment and their application in early diagnosis of cancers. Anal Cell Pathol 2020:6283796

    Article  Google Scholar 

  9. Vahidfar N, Eppard E, Farzanehfar S, Yordanova A, Fallahpoor M, Ahmadzadehfar H (2021) An impressive approach in nuclear medicine: theranostics. PET Clin 16:327–340

    Article  PubMed  Google Scholar 

  10. Mirzaei A, Jalilian AR, Aghanejad A et al (2015) Preparation and evaluation of 68Ga-ECC as a PET renal imaging agent. Nucl Med Mol Imaging 49:208–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aghanejad A, Jalilian AR, Maus S, Yousefnia H, Geramifar P, Beiki D (2016) Optimized production and quality control of 68Ga-DOTATATE. Iran J Nucl Med 24:29–36

    CAS  Google Scholar 

  12. Chen Q, Chen AZ, Jia G, Li J, Zheng C, Chen K (2022) Molecular imaging of tumor microenvironment to assess the effects of locoregional treatment for hepatocellular carcinoma. Hepatology Communications 6:652–664

    Article  CAS  PubMed  Google Scholar 

  13. Vahidfar N, Aghanejad A, Ahmadzadehfar H, Farzanehfar S, Eppard E (2021) Theranostic advances in breast cancer in nuclear medicine. Int J Mol Sci 22(9):4597. https://doi.org/10.3390/ijms22094597

  14. Nicin L, Wagner JUG, Luxán G, Dimmeler S (2022) Fibroblast-mediated intercellular crosstalk in the healthy and diseased heart. FEBS Lett 596:638–654

    Article  CAS  PubMed  Google Scholar 

  15. Moretti L, Stalfort J, Barker TH, Abebayehu D (2022) The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biol Chem 298(2):101530

  16. Poon S, Ailles LE (2022) Modeling the role of cancer-associated fibroblasts in tumor cell invasion. Cancers 14:962

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen Y, McAndrews KM, Kalluri R (2021) Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol 18:792–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li M, Younis MH, Zhang Y, Cai W, Lan X (2022) Clinical summary of fibroblast activation protein inhibitor-based radiopharmaceuticals: cancer and beyond. Eur J Nucl Med Mol Imaging 49(8):2844–2868

  19. Lindner T, Loktev A, Altmann A et al (2018) Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med 59:1415–1422

    Article  CAS  PubMed  Google Scholar 

  20. Guo W, Pang Y, Yao L et al (2021) Imaging fibroblast activation protein in liver cancer: a single-center post hoc retrospective analysis to compare [68Ga]Ga-FAPI-04 PET/CT versus MRI and [18F]-FDG PET/CT. Eur J Nucl Med Mol Imaging 48:1604–1617

    Article  CAS  PubMed  Google Scholar 

  21. Jin X, Wei M, Wang S et al (2022) Detecting fibroblast activation proteins in lymphoma using 68Ga-FAPI PET/CT. J Nucl Med: Off Publ Soc Nucl Med 63:212–217

    Article  CAS  Google Scholar 

  22. Röhrich M, Leitz D, Glatting FM et al (2022) Fibroblast activation protein-specific PET/CT imaging in fibrotic interstitial lung diseases and lung cancer: a translational exploratory study. J Nucl Med 63:127–133

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kessler L, Ferdinandus J, Hirmas N et al (2022) 68Ga-FAPI as a diagnostic tool in sarcoma: data from the 68Ga-FAPI PET prospective observational trial. J Nucl Med: Off Publ Soc Nucl Med 63:89–95

    Article  CAS  Google Scholar 

  24. Backhaus P, Burg MC, Roll W et al (2022) Simultaneous FAPI PET/MRI targeting the fibroblast-activation protein for breast cancer. Radiology 302:39–47

    Article  PubMed  Google Scholar 

  25. Liu Y, Watabe T, Kaneda-Nakashima K et al (2022) Fibroblast activation protein targeted therapy using [177Lu]FAPI-46 compared with [225Ac]FAPI-46 in a pancreatic cancer model. Eur J Nucl Med Mol Imaging 49:871–880

    Article  CAS  PubMed  Google Scholar 

  26. Huang J, Fu L, Hu K et al (2022) Automatic production and preliminary PET imaging of a new imaging agent [18F]AlF-FAPT. Front Oncol 11:802676

  27. Ruan Q, Feng J, Jiang Y et al (2022) Preparation and bioevaluation of 99mTc-labeled FAP inhibitors as tumor radiotracers to target the fibroblast activation protein. Mol Pharm 19:160–171

    Article  CAS  PubMed  Google Scholar 

  28. Wen X, Xu P, Shi M et al (2022) Evans blue-modified radiolabeled fibroblast activation protein inhibitor as long-acting cancer therapeutics. Theranostics 12:422–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qin C, Liu F, Huang J et al (2021) A head-to-head comparison of 68Ga-DOTA-FAPI-04 and 18F-FDG PET/MR in patients with nasopharyngeal carcinoma: a prospective study. Eur J Nucl Med Mol Imaging 48:3228–3237

    Article  CAS  PubMed  Google Scholar 

  30. Holl J, Kowalewski C, Zimek Z et al (2021) Chronic diabetic wounds and their treatment with skin substitutes. Cells 10(3):655

  31. Romani P, Nirchio N, Arboit M et al (2022) Mitochondrial fission links ECM mechanotransduction to metabolic redox homeostasis and metastatic chemotherapy resistance. Nat Cell Biol 24:168–180

    Article  CAS  PubMed  Google Scholar 

  32. Liu F, Yan JR, Chen S et al (2020) Polypeptide-rhodamine B probes containing laminin/fibronectin receptor-targeting sequence (YIGSR/RGD) for fluorescent imaging in cancers. Talanta 212:120718

  33. Zunder SM, Gelderblom H, Tollenaar RA, Mesker WE (2020) The significance of stromal collagen organization in cancer tissue: an in-depth discussion of literature. Crit Rev Oncol/Hematol 151:102907

  34. Erstad DJ, Sojoodi M, Taylor MS et al (2020) Fibrotic response to neoadjuvant therapy predicts survival in pancreatic cancer and is measurable with collagen-targeted molecular MRI. Clin Cancer Res 26:5007–5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bennink LL, Li Y, Kim B et al (2018) Visualizing collagen proteolysis by peptide hybridization: from 3D cell culture to in vivo imaging. Biomaterials 183:67–76

    Article  CAS  PubMed  Google Scholar 

  36. Dalton CJ, Lemmon CA (2021) Fibronectin: molecular structure, fibrillar structure and mechanochemical signaling. Cells 10(9):2443

  37. Qiao PL, Gargesha M, Liu Y et al (2022) Magnetic resonance molecular imaging of extradomain B fibronectin enables detection of pancreatic ductal adenocarcinoma metastasis. Magn Reson Imaging 86:37–45

    Article  CAS  PubMed  Google Scholar 

  38. Wei J, Hu M, Huang K, Lin S, Du H (2020) Roles of proteoglycans and glycosaminoglycans in cancer development and progression. Int J Mol Sci 21:1–28

    Article  Google Scholar 

  39. Faria-Ramos I, Poças J, Marques C et al (2021) Heparan sulfate glycosaminoglycans: (un)expected allies in cancer clinical management. Biomolecules 11:1–28

    Article  Google Scholar 

  40. Huang X, Fan C, Zhu H et al (2018) Glypican-1-antibody-conjugated Gd–Au nanoclusters for FI/MRI dual-modal targeted detection of pancreatic cancer. Int J Nanomed 13:2585–2599

    Article  CAS  Google Scholar 

  41. Lingasamy P, Laarmann AH, Teesalu T (2021) Tumor penetrating peptide-functionalized tenascin-C antibody for glioblastoma targeting. Curr Cancer Drug Targets 21:70–79

    Article  CAS  PubMed  Google Scholar 

  42. Kumazoe M, Hiroi S, Tanimoto Y et al (2020) Cancer cell selective probe by mimicking EGCG. Biochem Biophys Res Commun 525:974–981

    Article  CAS  PubMed  Google Scholar 

  43. Cai X, Wei W, Liu Z, Bai Z, Lei J, Xiao J (2020) In situ imaging of pathological collagen by electrostatic repulsion-destabilized peptide probes. ACS Appl Bio Mater 3:7492–7499

    Article  CAS  PubMed  Google Scholar 

  44. Salarian M, Yang H, Turaga RC et al (2019) Precision detection of liver metastasis by collagen-targeted protein MRI contrast agent. Biomaterials 224:119478

  45. Yao D, Wang Y, Zou R et al (2021) Wavelength-adjustable butterfly molecules in dynamic nanoassemblies for extradomain-B fibronectin-modulating optical imaging and synchronous phototherapy of triple-negative breast cancer. Chem Eng J 420:127658

  46. Schilb AL, Ayat NR, Vaidya AM et al (2021) Efficacy of targeted ECO/miR-200c nanoparticles for modulating tumor microenvironment and treating triple negative breast cancer as non-invasively monitored by MR molecular imaging. Pharm Res 38:1405–1418

    Article  CAS  PubMed  Google Scholar 

  47. Wang Y, Jiang L, Zhang Y et al (2020) Fibronectin-targeting and cathepsin B-activatable theranostic nanoprobe for MR/fluorescence imaging and enhanced photodynamic therapy for triple negative breast cancer. ACS Appl Mater Interfaces 12:33564–33574

    Article  CAS  PubMed  Google Scholar 

  48. Tseng WB, Chou YS, Lu CZ, Madhu M, Lu CY, Tseng WL (2021) Fluorescence sensing of heparin and heparin-like glycosaminoglycans by stabilizing intramolecular charge transfer state of dansyl acid-labeled AG73 peptides with glutathione-capped gold nanoclusters. Biosens Bioelectron 193:113522

  49. Sugyo A, Tsuji AB, Sudo H, Takano K, Kusakabe M, Higashi T (2020) Proof of concept study for increasing tenascin-C-targeted drug delivery to tumors previously subjected to therapy: X-irradiation increases tumor uptake. Cancers 12:1–15

    Article  Google Scholar 

  50. Lu Z, Kamat K, Johnson BP, Yin CC, Scholler N, Abbott KL (2019) Generation of a fully human scFv that binds tumor-specific glycoforms. Sci Rep 9:1–11

    Google Scholar 

  51. Pereira PMR, Ragupathi A, Shmuel S, Mandleywala K, Viola NT, Lewis JS (2019) HER2-targeted PET imaging and therapy of hyaluronan- masked HER2-overexpressing breast cancer affiliations: Department of Oncology. Wayne State University, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, Karmanos Cancer Institute

    Google Scholar 

  52. Łukaszewicz-Zając M, Dulewicz M, Mroczko B (2021) A disintegrin and metalloproteinase (ADAM) family: their significance in malignant tumors of the central nervous system (CNS). Int J Mol Sci 22(19):10378

  53. Fischer T, Riedl R (2021) Challenges with matrix metalloproteinase inhibition and future drug discovery avenues. Expert Opin Drug Discov 16:75–88

    Article  CAS  PubMed  Google Scholar 

  54. Umeizudike K, Räisänen I, Gupta S et al (2022) Active matrix metalloproteinase-8: a potential biomarker of oral systemic link. Clin Exp Dent Res 8:359–365

    Article  PubMed  Google Scholar 

  55. Kaasinen M, Hagström J, Mustonen H et al (2022) Matrix metalloproteinase 8 expression in a tumour predicts a favourable prognosis in pancreatic ductal adenocarcinoma. Int J Mol Sci 23(6):3314

  56. Nikolov A, Popovski N (2021) Role of gelatinases MMP-2 and MMP-9 in healthy and complicated pregnancy and their future potential as preeclampsia biomarkers. Diagnostics 11:480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang H, Li H (2021) Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: a systematic review and meta-analysis. BMC Cancer 21:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yin L, Sun H, Zhao M et al (2019) Rational design and synthesis of a metalloproteinase-activatable probe for dual-modality imaging of metastatic lymph nodes in vivo. J Org Chem 84(10):6126–6133

  59. Winer A, Adams S, Mignatti P (2018) Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol Cancer Ther 17:1147–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Alawak M, Abu Dayyih A, Mahmoud G et al (2021) ADAM 8 as a novel target for doxorubicin delivery to TNBC cells using magnetic thermosensitive liposomes. Eur J Pharm Biopharm 158:390–400

    Article  CAS  PubMed  Google Scholar 

  61. Raza S, Rajak S, Tewari A et al (2022) Multifaceted role of chemokines in solid tumors: from biology to therapy. Semin Cancer Biol 86(Pt 3):1105–1121

  62. Luo T, von der Ohe J, Hass R (2021) MSC-derived extracellular vesicles in tumors and therapy. Cancers 13(20):5212

  63. Xu H, Niu M, Yuan X, Wu K, Liu A (2020) CD44 as a tumor biomarker and therapeutic target. Exp Hematol Oncol 9:1–14

    Article  Google Scholar 

  64. Karakoçak BB, Laradji A, Primeau T, Berezin MY, Li S, Ravi N (2021) Hyaluronan-conjugated carbon quantum dots for bioimaging use. ACS Appl Mater Interfaces 13:277–286

    Article  PubMed  Google Scholar 

  65. Barghi L, Aghanejad A, Valizadeh H, Barar J, Asgari D (2012) Modified synthesis of erlotinib hydrochloride. Adv Pharm Bull 2:119–122

    PubMed  PubMed Central  Google Scholar 

  66. Hori Y (2013) Prominin-1 (CD133) reveals new faces of pancreatic progenitor cells and cancer stem cells: current knowledge and therapeutic perspectives. Adv Exp Med Biol 777:185–196

    Article  CAS  PubMed  Google Scholar 

  67. Aghanejad A, Jalilian AR, Fazaeli Y et al (2014) Synthesis and evaluation of [67Ga]-AMD3100: a novel imaging agent for targeting the chemokine receptor CXCR4. Sci Pharm 82:29–42

    Article  CAS  PubMed  Google Scholar 

  68. Srivastava M, Ahlawat N, Srivastava A (2021) Ovarian cancer stem cells: newer horizons. J Obstet Gynecol India 71:115–117

    Article  CAS  Google Scholar 

  69. Hu K, Ma X, Xie L et al (2022) Development of a stable peptide-based PET tracer for detecting CD133-expressing cancer cells. ACS Omega 7:334–341

    Article  CAS  PubMed  Google Scholar 

  70. Sun X, Chen Y, Zhao H et al (2018) Dual-modified cationic liposomes loaded with paclitaxel and survivin siRNA for targeted imaging and therapy of cancer stem cells in brain glioma. Drug Delivery 25:1718–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Raniszewska A, Kwiecień I, Rutkowska E, Rzepecki P, Domagała-Kulawik J (2021) Lung cancer stem cells—origin, diagnostic techniques and perspective for therapies. Cancers 13(12):2996

  72. Dhaliwal D, Shepherd TG (2022) Molecular and cellular mechanisms controlling integrin-mediated cell adhesion and tumor progression in ovarian cancer metastasis: a review. Clin Exp Metas 39:291–301

    Article  CAS  Google Scholar 

  73. Nowak B, Rogujski P, Janowski M, Lukomska B, Andrzejewska A (2021) Mesenchymal stem cells in glioblastoma therapy and progression: how one cell does it all. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1876:188582

    Article  CAS  PubMed  Google Scholar 

  74. Yamashita T, Kaneko S (2021) Liver cancer stem cells: recent progress in basic and clinical research. Regenerative Therapy 17:34–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu Y-C, Yeh C-T, Lin K-H (2020) Cancer stem cell functions in hepatocellular carcinoma and comprehensive therapeutic strategies. Cells 9(6):1331

  76. Bam R, Daryaei I, Abou-Elkacem L et al (2020) Toward the clinical development and validation of a Thy1-targeted ultrasound contrast agent for the early detection of pancreatic ductal adenocarcinoma. Invest Radiol 55:711–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Masciale V, Grisendi G, Banchelli F et al (2020) CD44+/EPCAM+ cells detect a subpopulation of ALDHhigh cells in human non-small cell lung cancer: a chance for targeting cancer stem cells? Oncotarget 11:1545

    Article  PubMed  PubMed Central  Google Scholar 

  78. Püschel J, Dubrovska A, Gorodetska I (2021) The multifaceted role of aldehyde dehydrogenases in prostate cancer stem cells. Cancers 13(18):4703

  79. Choi CK, Yang J, Kweon S-S et al (2021) Association between ALDH2 polymorphism and esophageal cancer risk in South Koreans: a case-control study. BMC Cancer 21:254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guo F, Yang Z, Sehouli J, Kaufmann AM (2022) Blockade of ALDH in cisplatin-resistant ovarian cancer stem cells in vitro synergistically enhances chemotherapy-induced cell death. Current Oncol 29(4):2808–2822

  81. Pereira R, Flaherty RL, Edwards RS, Greenwood HE, Shuhendler AJ, Witney TH (2022) A prodrug strategy for the in vivo imaging of aldehyde dehydrogenase activity. RSC Chemical Biology 3:561–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Anorma C, Hedhli J, Bearrood TE et al (2018) Surveillance of cancer stem cell plasticity using an isoform-selective fluorescent probe for aldehyde dehydrogenase 1A1. ACS Cent Sci 4:1045–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Choi S, Lee SH, Park S, Park SH, Park C, Key J (2021) Indocyanine green-loaded plga nanoparticles conjugated with hyaluronic acid improve target specificity in cervical cancer tumors. Yonsei Med J 62:1042–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ning J, Jiang S, Li X et al (2021) GPC3 affects the prognosis of lung adenocarcinoma and lung squamous cell carcinoma. BMC Pulm Med 21:199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Demir B, Moulahoum H, Ghorbanizamani F et al (2021) Carbon dots and curcumin-loaded CD44-targeted liposomes for imaging and tracking cancer chemotherapy: a multi-purpose tool for theranostics. J Drug Deliv Sci Technol 62:102363

  86. Liu Y, Yao X, Wang C et al (2021) Peptide-based 68Ga-PET radiotracer for imaging CD133 expression in colorectal cancer. Nucl Med Commun 42(10):1144–1150

  87. Jung KH, Lee JH, Kim M, Lee EJ, Cho YS, Lee KH (2022) Celecoxib-induced modulation of colon cancer CD133 expression occurs through AKT inhibition and is monitored by 89Zr immuno-PET. Mol Imaging 2022:4906934

  88. Tan H, Hou N, Liu Y et al (2020) CD133 antibody targeted delivery of gold nanostars loading IR820 and docetaxel for multimodal imaging and near-infrared photodynamic/photothermal/chemotherapy against castration resistant prostate cancer. Nanomed: Nanotechnol Biol Med 27:102192

  89. Pan Y, Zhou S, Liu C et al (2022) Dendritic polyglycerol‐conjugated gold nanostars for metabolism inhibition and targeted photothermal therapy in breast cancer stem cells. Adv Healthcare Mater 11(8):e2102272

  90. Lu Q, Yang M-F, Liang Y-J et al (2022) Immunology of inflammatory bowel disease: molecular mechanisms and therapeutics. J Inflamm Res 15:1825–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Waaijer SJH, Giesen D, Ishiguro T et al (2020) Preclinical PET imaging of bispecific antibody ERY974 targeting CD3 and glypican 3 reveals that tumor uptake correlates to T cell infiltrate. J Immuno Therapy Cancer 8(1):e000548

  92. Suurs FV, Lorenczewski G, Stienen S et al (2020) The biodistribution of a CD3 and EpCAM bispecific T-cell engager is driven by the CD3 arm. J Nucl Med 61:1594–1601

    Article  CAS  PubMed  Google Scholar 

  93. Mathur D, Root AR, Bugaj-Gaweda B et al (2020) A novel GUCY2C-CD3 T-cell engaging bispecific construct (PF-07062119) for the treatment of gastrointestinal cancers. Clin Cancer Res 26:2188–2202

    Article  CAS  PubMed  Google Scholar 

  94. Maresca KP, Chen J, Mathur D et al (2021) Preclinical evaluation of 89Zr-Df-IAB22M2C PET as an imaging biomarker for the development of the GUCY2C-CD3 bispecific PF-07062119 as a T cell engaging therapy. Mol Imag Biol 23:941–951

    Article  CAS  Google Scholar 

  95. Kasten BB, Houson HA, Coleman JM et al (2021) Positron emission tomography imaging with 89Zr-labeled anti-CD8 cys-diabody reveals CD8+ cell infiltration during oncolytic virus therapy in a glioma murine model. Sci Rep 11:1–12

    Google Scholar 

  96. Traenkle B, Kaiser PD, Pezzana S et al (2021) Single-domain antibodies for targeting, detection, and in vivo imaging of human CD4+ cells. Front Immunol 12:1–17

    Article  Google Scholar 

  97. Martorana F, Colombo I, Treglia G, Gillessen S, Stathis A (2021) A systematic review of phase II trials exploring anti-PD-1/PD-L1 combinations in patients with solid tumors. Cancer Treat Rev 101:102300

    Article  CAS  PubMed  Google Scholar 

  98. Li W, Wang Y, Rubins D et al (2021) PET/CT imaging of 89Zr-N-sucDf-pembrolizumab in healthy cynomolgus monkeys. Mol Imag Biol 23:250–259

    Article  CAS  Google Scholar 

  99. Bansal A, Pandey MK, Barham W et al (2021) Non-invasive immunoPET imaging of PD-L1 using anti-PD-L1-B11 in breast cancer and melanoma tumor model. Nucl Med Biol 100–101:4–11

    Article  PubMed  Google Scholar 

  100. Shaffer T, Natarajan A, Gambhir SS (2021) PET imaging of TIGIT expression on tumor-infiltrating lymphocytes. Clin Cancer Res 27:1932–1940

    Article  CAS  PubMed  Google Scholar 

  101. Alluri SR, Higashi Y, Kil KE (2021) Pet imaging radiotracers of chemokine receptors. Molecules 26:1–22

    Article  Google Scholar 

  102. Kraus S, Dierks A, Rasche L et al (2022) 68Ga-Pentixafor PET/CT for detection of chemokine receptor CXCR4 expression in myeloproliferative neoplasms. J Nucl Med: Off Publ Soc Nucl Med 63:96–99

    Article  CAS  Google Scholar 

  103. Zhao Y, You M, Detering L, Sultan D, Luehmann H, Liu Y (2021) Chemokine receptor 2 targeted gold nanocluster imaging triple negative breast cancer with positron emission tomography. Part Part Syst Charact 38(3):2000287

  104. van de Donk PP, Wind TT, Hooiveld-Noeken JS et al (2021) Interleukin-2 PET imaging in patients with metastatic melanoma before and during immune checkpoint inhibitor therapy. Eur J Nucl Med Mol Imaging 48:4369–4376

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hess PR (2022) Major histocompatibility complex antigens. In: Brooks MB, Harr KE, Seelig DM, Wardrop KJ, Weiss DJ (eds) Schalm’s veterinary hematology. Wiley, pp 48–62. https://doi.org/10.1002/9781119500537.ch7

  106. Khajeh S, Tohidkia MR, Aghanejad A, Mehdipour T, Fathi F, Omidi Y (2018) Phage display selection of fully human antibody fragments to inhibit growth-promoting effects of glycine-extended gastrin 17 on human colorectal cancer cells. Artif Cells Nanomed Biotechnol 46:1082–1090

    Article  CAS  PubMed  Google Scholar 

  107. Fouladi M, Sarhadi S, Tohidkia M et al (2019) Selection of a fully human single domain antibody specific to Helicobacter pylori urease. Appl Microbiol Biotechnol 103:3407–3420

    Article  CAS  PubMed  Google Scholar 

  108. Dixon KJ, Wu J, Walcheck B (2021) Engineering anti-tumor monoclonal antibodies and Fc receptors to enhance ADCC by human NK cells. Cancers 13(2):312

  109. Wang Y, Hu Y, Jiang Y, Zhou S (2021) Oxidative stress in the tumor immune microenvironment. In: Huang C, Zhang Y (eds) Oxidative stress: human diseases and medicine. Springer, Singapore, pp 27–54

  110. Rakhshandehroo T, Smith BR, Glockner HJ, Rashidian M, Pandit-Taskar N (2022) Molecular immune targeted imaging of tumor microenvironment. Nanotheranostics 6:286–305

    Article  PubMed  PubMed Central  Google Scholar 

  111. Shaffer TM, Aalipour A, Schurch CM, Gambhiry SS (2020) Pet imaging of the natural killer cell activation receptor nkp30. J Nucl Med 61:1348–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. López-Camarillo C, Ruiz-García E, Starling N, Marchat LA (2020) Editorial: neovascularization, angiogenesis and vasculogenic mimicry in cancer. Front Oncol 10:1140

  113. Wei X, Chen Y, Jiang X et al (2021) Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol Cancer 20:7

    Article  PubMed  PubMed Central  Google Scholar 

  114. Monasterio G, Castillo FA, Villablanca EJ (2022) Chapter 13 - leukocyte trafficking to the intestinal barrier in health and disease. In: Schnoor M, Yin LM, Sun SX (eds) Cell movement in health and disease.  Academic Press, pp 203–235. https://doi.org/10.1016/B978-0-323-90195-6.00015-2

  115. Yang Y, Cao Y (2022) The impact of VEGF on cancer metastasis and systemic disease. Semin Cancer Biol 86(Pt 3):251–261

  116. Dabravolski SA, Khotina VA, Omelchenko AV, Kalmykov VA, Orekhov AN (2022) The role of the VEGF family in atherosclerosis development and its potential as treatment targets. Int J Mol Sci 23(2):931

  117. Nakanishi Y, Kang S, Kumanogoh A (2022) Axon guidance molecules in immunometabolic diseases. Inflamm Regener 42:5

    Article  Google Scholar 

  118. Novy Z, Janousek J, Barta P, Petrik M, Hajduch M, Trejtnar F (2021) Preclinical evaluation of anti-VEGFR2 monoclonal antibody ramucirumab labelled with zirconium-89 for tumour imaging. J Labelled Compd Radiopharm 64:262–270

    Article  CAS  Google Scholar 

  119. Mason CA, Carter LM, Mandleywala K et al (2020) Imaging early-stage metastases using an 18 F-labeled VEGFR-1-specific single chain VEGF mutant. Mol Imaging Biol 23(3):340–349

  120. Duro-Castano A, Gallon E, Decker C, Vicent MJ (2017) Modulating angiogenesis with integrin-targeted nanomedicines. Adv Drug Deliv Rev 119:101–119

    Article  CAS  PubMed  Google Scholar 

  121. de Jongh SJ, Tjalma JJJ, Koller M et al (2020) Back-table fluorescence-guided imaging for circumferential resection margin evaluation using bevacizumab-800CW in patients with locally advanced rectal cancer. J Nucl Med 61:655–661

    Article  PubMed  PubMed Central  Google Scholar 

  122. Mezu-Ndubuisi OJ, Maheshwari A (2021) The role of integrins in inflammation and angiogenesis. Pediatr Res 89:1619–1626

    Article  PubMed  Google Scholar 

  123. Rahman SR, Roper JA, Grove JI, Aithal GP, Pun KT, Bennett AJ (2022) Integrins as a drug target in liver fibrosis. Liver Int 42:507–521

    Article  CAS  PubMed  Google Scholar 

  124. Chakraborty D, Das A, Bal CS (2022) Tumor-targeting agents. In: Harsini S, Alavi A, Rezaei N (eds) Nuclear medicine and immunology. Springer International Publishing, Cham, pp 217–236

    Chapter  Google Scholar 

  125. Liu J, Cheng X, Tian X et al (2019) Design and synthesis of novel dual-cyclic RGD peptides for αvβ3 integrin targeting. Bioorg Med Chem Lett 29:896–900

    Article  CAS  PubMed  Google Scholar 

  126. Zhang X, Xi Z, Machuki JO et al (2019) Gold cube-in-cube based oxygen nanogenerator: a theranostic nanoplatform for modulating tumor microenvironment for precise chemo-phototherapy and multimodal imaging. ACS Nano 13:5306–5325

    Article  CAS  PubMed  Google Scholar 

  127. Mokoala KMG, Lawal IO, Maserumule LC et al (2022) A prospective investigation of tumor hypoxia imaging with 68Ga-nitroimidazole PET/CT in patients with carcinoma of the cervix uteri and comparison with18F-FDG PET/CT: correlation with immunohistochemistry. J Clin Med 11(4):962

  128. Shimizu Y, Nakai Y, Iikuni S, Watanabe H, Nakamoto Y, Ono M (2021) Synthesis and evaluation of gallium-68-labeled nitroimidazole-based imaging probes for PET diagnosis of tumor hypoxia. Ann Nucl Med 35:360–369

    Article  CAS  PubMed  Google Scholar 

  129. Yang Y, Zhang J, Zou H, Shen Y, Deng S, Wu Y (2021) Synthesis and evaluation of 68Ga-labeled dimeric cNGR peptide for PET imaging of CD13 expression with ovarian cancer xenograft. J Cancer 12:244–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kis A, Dénes N, Szabó JP et al (2021) In vivo molecular imaging of the efficacy of aminopeptidase N (APN/CD13) receptor inhibitor treatment on experimental tumors using 68Ga-NODAGA-c(NGR) peptide. Bio Med Res Int 2021:6642973

Download references

Funding

This work was supported by the Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences (grant number: 67324).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayuob Aghanejad.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siminzar, P., Tohidkia, M.R., Eppard, E. et al. Recent Trends in Diagnostic Biomarkers of Tumor Microenvironment. Mol Imaging Biol 25, 464–482 (2023). https://doi.org/10.1007/s11307-022-01795-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-022-01795-1

Key words

Navigation