Skip to main content

Advertisement

Log in

Mapping pH at Cancer Cell Surfaces

  • Brief Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

To develop a tool to measure the pH at the surfaces of individual cells.

Procedures

The SNARF pH-sensitive dye was conjugated to a pHLIP® peptide (pH-Low Insertion Peptide) that binds cellular membranes in tumor spheroids. A beam splitter allows simultaneous recording of two images (580 and 640 nm) by a CCD camera. The ratio of the two images is converted into a pH map resolving single spheroid cells. An average pH for each cell is calculated and a pH histogram is derived.

Results

Surface pH depends on cellular glycolytic activity, which was varied by adding glucose or deoxy-glucose. Glucose was found to decrease the surface pH relative to the pH of the bulk solution. The surface pH of metastatic cancer cells was lower than that of non-metastatic cells indicating a higher glycolytic activity.

Conclusions

Our method allows cell surface pH measurement and its correlation with cellular glycolytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  2. Griffiths JR (1991) Are cancer cells acidic? Br J Cancer 64:425–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Griffiths JR, Stevens AN, Iles RA et al (1981) D (1981) 31P-NMR investigation of solid tumours in the living rat. Biosci Rep 1:319–325

    Article  CAS  PubMed  Google Scholar 

  4. Wike-Hooley JL, Haveman J, Reinhold HS (1984) The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol 2:343–366

    Article  CAS  PubMed  Google Scholar 

  5. Zhang X, Lin Y, Gillies RJ (2010) Tumor pH and its measurement. J Nucl Med 51:1167–1170

    Article  CAS  PubMed  Google Scholar 

  6. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482

    Article  CAS  PubMed  Google Scholar 

  7. Damaghi M, Wojtkowiak JW, Gillies RJ (2013) pH sensing and regulation in cancer. Front Physiol 4:370

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chiche J, Brahimi-Horn MC, Pouyssegur J (2010) Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 14:771–794

    Article  CAS  PubMed  Google Scholar 

  9. Anderson M, Moshnikova A, Engelman DM, Reshetnyak YK, Andreev OA (2016) Probe for the measurement of cell surface pH in vivo and ex vivo. Proc Natl Acad Sci U S A 113:8177–8181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Andreev OA, Dupuy AD, Segala M, Sandugu S, Serra DA, Chichester CO, Engelman DM, Reshetnyak YK (2007) Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo. Proc Natl Acad Sci U S A 104:7893–7898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Andreev OA, Engelman DM, Reshetnyak YK (2010) pH-sensitive membrane peptides (pHLIPs) as a novel class of delivery agents. Mol Membr Biol 27:341–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reshetnyak YK, Yao L, Zheng S, Kuznetsov S, Engelman DM, Andreev OA (2011) Measuring tumor aggressiveness and targeting metastatic lesions with fluorescent pHLIP. Mol Imaging Biol 13:1146–1156

    Article  PubMed  PubMed Central  Google Scholar 

  13. Weerakkody D, Moshnikova A, Thakur MS, Moshnikova V, Daniels J, Engelman DM, Andreev OA, Reshetnyak YK (2013) Family of pH (low) insertion peptides for tumor targeting. Proc Natl Acad Sci U S A 110:5834–5839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andreev OA, Engelman DM, Reshetnyak YK (2014) Targeting diseased tissues by pHLIP insertion at low cell surface pH. Front Physiol 5:97

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wyatt LC, Lewis JS, Andreev OA et al (2017) Applications of pHLIP Technology for Cancer Imaging and Therapy: (trends in biotechnology 35, 653-664, 2017). Trends Biotechnol 36(12):1300

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hashim AI, Zhang X, Wojtkowiak JW, Martinez GV, Gillies RJ (2011) Imaging pH and metastasis. NMR Biomed 24:582–591

    PubMed  PubMed Central  Google Scholar 

  17. Moon RB, Richards JH (1973) Determination of intracellular pH by 31P magnetic resonance. J Biol Chem 248:7276–7278

    CAS  PubMed  Google Scholar 

  18. Gillies RJ, Liu Z, Bhujwalla Z (1994) 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate. Am J Phys 267:C195–C203

    Article  CAS  Google Scholar 

  19. Ojugo AS, McSheehy PM, McIntyre DJ et al (1999) Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy: a comparison of exogenous (19)F and (31)P probes. NMR Biomed 12:495–504

    Article  CAS  PubMed  Google Scholar 

  20. Garcia-Martin ML, Herigault G, Remy C et al (2001) Mapping extracellular pH in rat brain gliomas in vivo by 1H magnetic resonance spectroscopic imaging: comparison with maps of metabolites. Cancer Res 61:6524–6531

    CAS  PubMed  Google Scholar 

  21. Rata M, Giles SL, deSouza NM et al (2014) Comparison of three reference methods for the measurement of intracellular pH using 31P MRS in healthy volunteers and patients with lymphoma. NMR Biomed 27:158–162

    Article  CAS  PubMed  Google Scholar 

  22. Wykoff CC, Beasley NJ, Watson PH et al (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 60:7075–7083

    CAS  PubMed  Google Scholar 

  23. Griffiths JR, McIntyre DJ, Howe FA, Stubbs M (2001) Why are cancers acidic? A carrier-mediated diffusion model for H+ transport in the interstitial fluid. Novartis Found Symp 240:46–62 discussion 62–47, 152–153

    CAS  PubMed  Google Scholar 

  24. Ivanov S, Liao SY, Ivanova A, Danilkovitch-Miagkova A, Tarasova N, Weirich G, Merrill MJ, Proescholdt MA, Oldfield EH, Lee J, Zavada J, Waheed A, Sly W, Lerman MI, Stanbridge EJ (2001) Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 158:905–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank our colleagues Anna Moshnikova and Michael Anderson for useful discussions and suggestions.

Funding

Financial support was received from NIH RO1 GM073857 grant to DME, OAA, and YKR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg A. Andreev.

Ethics declarations

Conflict of Interest

D.M.E., O.A.A., and Y.K.R. are founders of pHLIP, Inc. They have shares in the company, but the company did not fund any part of the work reported in the paper, which was done in their academic laboratories.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, D., Engelman, D.M., Reshetnyak, Y.K. et al. Mapping pH at Cancer Cell Surfaces. Mol Imaging Biol 21, 1020–1025 (2019). https://doi.org/10.1007/s11307-019-01335-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-019-01335-4

Key Words

Navigation