Skip to main content

Advertisement

Log in

Adenine Nucleotide Translocase 2 as an Enzyme Related to [18F] FDG Accumulation in Various Cancers

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Although glucose transporter 1 (GLUT1) and hexokinase 2 (HK2) are known as major proteins involved in the molecular mechanisms for accumulating 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) in cancer cells, sometimes, [18F] FDG accumulation cannot be explained by the expression of these two proteins. We investigated the involvement of adenine nucleotide translocase 2 (ANT2), which catalyzes ADP/ATP exchange at the mitochondrial inner membrane, in [18F] FDG accumulation.

Procedures

ANT2 expression was evaluated in various cancer cell lines and human cancer tissues (microarrays) using western blot and immunohistochemical (IHC) staining, respectively. The expression levels of ANT2 were compared to [18F] FDG accumulation and pathologic findings, including differentiation grade. Additionally, we modulated ANT2 expression levels using ANT2 siRNA and an ANT2 expression vector in cancer cells and murine xenografted tumors.

Results

[18F] FDG accumulation correlated with ANT2 expression in various cancer cell lines; this was not explained by GLUT1 and/or HK2 expression. At both the cell and tissue levels, ANT2 expression was high in less-differentiated or more malignant type of cancers. [18F] FDG accumulation changed according to the modulation of the ANT2 expression level.

Conclusion

In various cancer cells and tissues, the expression levels of ANT2 explained [18F] FDG accumulation better than those of GLUT1 and HK2. ANT2 can be used as a marker of dedifferentiated pathology and aggressiveness of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  2. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482

    Article  CAS  PubMed  Google Scholar 

  4. Kubota K, Matsuzawa T, Fujiwara T, Ito M, Hatazawa J, Ishiwata K, Iwata R, Ido T (1990) Differential diagnosis of lung tumor with positron emission tomography: a prospective study. J Nucl Med 31:1927–1932

    CAS  PubMed  Google Scholar 

  5. Gambhir SS, Czernin J, Schwimmer J et al (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42(Suppl 5):1S–93S

    CAS  PubMed  Google Scholar 

  6. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693

    Article  CAS  PubMed  Google Scholar 

  7. Pieterman RM, van Putten JW, Meuzelaar JJ et al (2000) Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med 343:254–261

    Article  CAS  PubMed  Google Scholar 

  8. Antoniou AJ, Marcus C, Tahari AK, Wahl RL, Subramaniam RM (2014) Follow-up or surveillance 18F-FDG PET/CT and survival outcome in lung cancer patients. J Nucl Med 55:1062–1068

    Article  CAS  PubMed  Google Scholar 

  9. Smith TA (1998) FDG uptake, tumour characteristics and response to therapy: a review. Nucl Med Commun 19:97–105

    Article  CAS  PubMed  Google Scholar 

  10. Pauwels EK, McCready VR, Stoot JH et al (1998) The mechanism of accumulation of tumor-localising radiopharmaceuticals. Eur J Nucl Med 25:277–305

    Article  CAS  PubMed  Google Scholar 

  11. Gallagher BM, Fowler JS, Gutterson NI, MacGregor R, Wan CN, Wolf AP (1978) Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med 19:1154–1161

    CAS  PubMed  Google Scholar 

  12. Pauwels EK, Ribeiro MJ, Stoot JH et al (1998) FDG accumulation and tumor biology. Nucl Med Biol 25:317–322

    Article  CAS  PubMed  Google Scholar 

  13. Szablewski L (2013) Expression of glucose transporters in cancers. Biochim Biophys Acta 1835:164–169

    CAS  PubMed  Google Scholar 

  14. Smith TA (2000) Mammalian hexokinases and their abnormal expression in cancer. Br J Biomed Sci 57:170–178

    CAS  PubMed  Google Scholar 

  15. Hay N (2016) Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer 16:635–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Wheaton W, Chandel N, Laakso M, Muller WJ, Allen EL, Jha AK, Smolen GA, Clasquin MF, Robey RB, Hay N (2013) Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24:213–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smith TA (2001) The rate-limiting step for tumor [18F]fluoro-2-deoxy-D-glucose (FDG) incorporation. Nucl Med Biol 28:1–4

    Article  CAS  PubMed  Google Scholar 

  18. Mertens K, Mees G, Lambert B, van de Wiele C, Goethals I (2012) In vitro 2-deoxy-2-[18F]fluoro-D-glucose uptake: practical considerations. Cancer Biother Radiopharm 27:183–188

    Article  CAS  PubMed  Google Scholar 

  19. Jadvar H, Alavi A, Gambhir SS (2009) 18F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization. J Nucl Med 50:1820–1827

    Article  PubMed  Google Scholar 

  20. Alvarez JV, Belka GK, Pan TC, Chen CC, Blankemeyer E, Alavi A, Karp JS, Chodosh LA (2014) Oncogene pathway activation in mammary tumors dictates FDG-PET uptake. Cancer Res 74:7583–7598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Riedl CC, Akhurst T, Larson S, Stanziale SF, Tuorto S, Bhargava A, Hricak H, Klimstra D, Fong Y (2007) 18F-FDG PET scanning correlates with tissue markers of poor prognosis and predicts mortality for patients after liver resection for colorectal metastases. J Nucl Med 48:771–775

    Article  PubMed  Google Scholar 

  22. Robey RB, Hay N (2006) Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25:4683–4696

    Article  CAS  PubMed  Google Scholar 

  23. Golshani-Hebroni SG, Bessman SP (1997) Hexokinase binding to mitochondria: a basis for proliferative energy metabolism. J Bioenerg Biomembr 29:331–338

    Article  CAS  PubMed  Google Scholar 

  24. Pedersen PL (2008) Voltage dependent anion channels (VDACs): a brief introduction with a focus on the outer mitochondrial compartment’s roles together with hexokinase-2 in the “Warburg effect” in cancer. J Bioenerg Biomembr 40:123–126

    Article  CAS  PubMed  Google Scholar 

  25. Gogvadze V, Zhivotovsky B, Orrenius S (2010) The Warburg effect and mitochondrial stability in cancer cells. Mol Asp Med 31:60–74

    Article  CAS  Google Scholar 

  26. Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25:4777–4786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klingenberg M (2008) The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta 1778:1978–2021

    Article  CAS  PubMed  Google Scholar 

  28. Le Bras M, Borgne-Sanchez A, Touat Z et al (2006) Chemosensitization by knockdown of adenine nucleotide translocase-2. Cancer Res 66:9143–9152

    Article  CAS  PubMed  Google Scholar 

  29. Chevrollier A, Loiseau D, Reynier P, Stepien G (2011) Adenine nucleotide translocase 2 is a key mitochondrial protein in cancer metabolism. Biochim Biophys Acta 1807:562–567

    Article  CAS  PubMed  Google Scholar 

  30. Gavaldà-Navarro A, Mampel T, Viñas O (2016) Changes in the expression of the human adenine nucleotide translocase isoforms condition cellular metabolic/proliferative status. Open Biol 6:150108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Perisic L, Hedin E, Razuvaev A, Lengquist M, Osterholm C, Folkersen L, Gillgren P, Paulsson-Berne G, Ponten F, Odeberg J, Hedin U (2013) Profiling of atherosclerotic lesions by gene and tissue microarrays reveals PCSK6 as a novel protease in unstable carotid atherosclerosis. Arterioscler Thromb Vasc Biol 33:2432–2443

    Article  CAS  PubMed  Google Scholar 

  32. Chiu YL, Rana TM (2003) siRNA function in RNAi: a chemical modification analysis. RNA 9:1034–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mathupala SP, Ko YH, Pedersen PL (2009) Hexokinase-2 bound to mitochondria: Cancer’s stygian link to the “Warburg effect” and a pivotal target for effective therapy. Semin Cancer Biol 19:17–24

    Article  CAS  PubMed  Google Scholar 

  34. Stepien G, Torroni A, Chung AB et al (1992) Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem 267:14592–14597

    CAS  PubMed  Google Scholar 

  35. Brenner C, Subramaniam K, Pertuiset C, Pervaiz S (2011) Adenine nucleotide translocase family: four isoforms for apoptosis modulation in cancer. Oncogene 30:883–895

    Article  CAS  PubMed  Google Scholar 

  36. Brower JV, Rodic N, Seki T, Jorgensen M, Fliess N, Yachnis AT, McCarrey JR, Oh SP, Terada N (2007) Evolutionarily conserved mammalian adenine nucleotide translocase 4 is essential for spermatogenesis. J Biol Chem 282:29658–29666

    Article  CAS  PubMed  Google Scholar 

  37. Chevrollier A, Loiseau D, Chabi B, Renier G, Douay O, Malthièry Y, Stepien G (2005) ANT2 isoform required for cancer cell glycolysis. J Bioenerg Biomembr 37:307–316

    Article  CAS  PubMed  Google Scholar 

  38. Kim HS, Je JH, Son TG, Park HR, Ji ST, Pokharel YR, Jeon HM, Kang KW, Kang HS, Chang SC, Kim HS, Chung HY, Lee J (2012) The hepatoprotective effects of adenine nucleotide translocator-2 against aging and oxidative stress. Free Radic Res 46:21–29

    Article  CAS  PubMed  Google Scholar 

  39. Vesselle H, Schmidt RA, Pugsley JM et al (2000) Lung cancer proliferation correlates with [F-18] fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res 6:3837–3844

    CAS  PubMed  Google Scholar 

  40. Vesselle H, Salskov A, Turcotte E, Wiens L, Schmidt R, Jordan CD, Vallières E, Wood DE (2008) Relationship between non-small cell lung cancer FDG uptake at PET, tumor histology, and Ki-67 proliferation index. J Thorac Oncol 3:971–978

    Article  PubMed  Google Scholar 

  41. Seo S, Hatano E, Higashi T, Hara T, Tada M, Tamaki N, Iwaisako K, Ikai I, Uemoto S (2007) Fluorine-18 fluorodeoxyglucose positron emission tomography predicts tumor differentiation, P-glycoprotein expression, and outcome after resection in hepatocellular carcinoma. Clin Cancer Res 13(2 Pt 1):427–433

    Article  CAS  PubMed  Google Scholar 

  42. Abraham T, Schöder H (2011) Thyroid cancer--indications and opportunities for positron emission tomography/computed tomography imaging. Semin Nucl Med 41:121–138

    Article  PubMed  Google Scholar 

  43. Bogsrud TV, Karantanis D, Nathan MA, Mullan BP, Wiseman GA, Kasperbauer JL, Reading CC, Hay ID, Lowe VJ (2008) 18F-FDG PET in the management of patients with anaplastic thyroid carcinoma. Thyroid 18:713–719

    Article  CAS  PubMed  Google Scholar 

  44. Are C, Shaha AR (2006) Anaplastic thyroid carcinoma: biology, pathogenesis, prognostic factors, and treatment approaches. Ann Surg Oncol 13:453–464

    Article  PubMed  Google Scholar 

  45. Jang JY, Kim YG, Nam SJ, Keam B, Kim TM, Jeon YK, Kim CW (2016) Targeting adenine nucleotide translocase-2 (ANT2) to overcome resistance to epidermal growth factor receptor tyrosine kinase inhibitor in non-small cell lung Cancer. Mol Cancer Ther 15:1387–1396

    Article  CAS  PubMed  Google Scholar 

  46. Prabhu D, Goldstein AC, El-Khoury R et al (2015) ANT2-defective fibroblasts exhibit normal mitochondrial bioenergetics. Mol Genet Metab Rep 3:43–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cho J, Zhang Y, Park SY, Joseph AM, Han C, Park HJ, Kalavalapalli S, Chun SK, Morgan D, Kim JS, Someya S, Mathews CE, Lee YJ, Wohlgemuth SE, Sunny NE, Lee HY, Choi CS, Shiratsuchi T, Oh SP, Terada N (2017) Mitochondrial ATP transporter depletion protects mice against liver steatosis and insulin resistance. Nat Commun 8:14477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Research Foundation, Ministry of Science and ICT (2011-0030001 for J-K.C. and H.Y., 2017-R1A2B4012813 for H.Y.), and the Korea Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI14C1072 for K.W.K, G.J.C. and H.Y., HI15C2971 for H.Y.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyewon Youn or June-Key Chung.

Ethics declarations

The study has been approved by the Institutional Review Board and all subjects signed an informed consent form.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(PDF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CH., Kim, M.J., Lee, H.H. et al. Adenine Nucleotide Translocase 2 as an Enzyme Related to [18F] FDG Accumulation in Various Cancers. Mol Imaging Biol 21, 722–730 (2019). https://doi.org/10.1007/s11307-018-1268-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-018-1268-x

Key words

Navigation