Skip to main content

Advertisement

Log in

Coupled Imaging with [18F]FBB and [18F]FDG in AD Subjects Show a Selective Association Between Amyloid Burden and Cortical Dysfunction in the Brain

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The present study was aimed to investigate the relationships between dysfunction of cortical glucose metabolism as detectable by means of 2-deoxy-2-[18F]fluoro -D-glucose ([18F]FDG) positron emission tomography/x-ray computed tomography (PET/CT) and amyloid burden as detectable by means of 4-{(E)-2-[4-(2-{2-[2-[18F]fluoroethoxy]ethoxy}ethoxy)phenyl]vinyl}-N-methylaniline (florbetaben; [18F]FBB) in a group of patients affected by Alzheimer’s disease (AD).

Procedures

We examined 38 patients newly diagnosed with AD according to the NINCDS-ADRDA criteria. All the subjects underwent a PET/CT scan using both [18F]FDG and [18F]FBB with an average interval of 1 month. We used statistical parametric mapping (SPM8) implemented in Matlab R2012b and WFU pickatlas for the definition of a region of interest (ROI) mask including the whole cortex. These data were then normalized on the counts of the cerebellum and then used for a regression analysis on [18F]FDG scans in SPM. Furthermore, 58 control subjects were used as control group for [18F]FDG PET/CT scans.

Results

SPM analysis in AD patients showed a significant negative correlation between [18F] FBB and [18F] FDG uptake in temporal and parietal lobes bilaterally. Of note, these areas in AD patients displayed a marked glucose hypometabolism compared to control group.

Conclusions

Combined imaging with [18F]FBB and [18FFDG shows that amyloid burden in the brain is related to cortical dysfunction of temporal and parietal lobes in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig 2.
Fig. 3.

Similar content being viewed by others

References

  1. Alzheimer’s Assoc. (2016) 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 12:459–509

    Article  Google Scholar 

  2. Swerdlow RH (2007) Pathogenesis of Alzheimer’s disease. Clin Interv Aging 2(3):347–359

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185. https://doi.org/10.1126/science.1566067

    Article  PubMed  CAS  Google Scholar 

  4. Chiaravalloti A, Danieli R, Lacanfora A et al (2017) Usefulness of 18F florbetaben in diagnosis of Alzheimer’s disease and other types of dementia. Curr Alzheimer Res 14:154–160

    Article  PubMed  CAS  Google Scholar 

  5. Sabri O, Seibyl J, Rowe C, Barthel H (2015) Beta-amyloid imaging with florbetaben. Clin Transl Imaging 3(1):13–26. https://doi.org/10.1007/s40336-015-0102-6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol 55:306–319

    Article  PubMed  CAS  Google Scholar 

  7. O’Brien JT, Firbank MJ, Davison C, Barnett N, Bamford C, Donaldson C, Olsen K, Herholz K, Williams D, Lloyd J (2014) 18F-FDG PET and perfusion SPECT in the diagnosis of Alzheimer and Lewy body dementias. J Nucl Med 55(12):1959–1965. https://doi.org/10.2967/jnumed.114.143347

    Article  PubMed  CAS  Google Scholar 

  8. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145. https://doi.org/10.1097/00004647-200110000-00001

    Article  PubMed  CAS  Google Scholar 

  9. Newberg AB, Arnold SE, Wintering N, Rovner BW, Alavi A (2012) Initial clinical comparison of 18F-florbetapir and 18F-FDG PET in patients with Alzheimer disease and controls. J Nucl Med 53(6):902–907. https://doi.org/10.2967/jnumed.111.099606

    Article  PubMed  CAS  Google Scholar 

  10. Aisen PS, Petersen RC, Donohue MC, Gamst A, Raman R, Thomas RG, Walter S, Trojanowski JQ, Shaw LM, Beckett LA, Jack CR Jr, Jagust W, Toga AW, Saykin AJ, Morris JC, Green RC, Weiner MW, Alzheimer’s Disease Neuroimaging Initiative (2010) Clinical Core of the Alzheimer’s Disease Neuroimaging Initiative: progress and plans. Alzheimers Dement 6(3):239–246. https://doi.org/10.1016/j.jalz.2010.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shin J, Tsui W, Li Y et al (2011) Resting-state glucose metabolism level is associated with the regional pattern of amyloid pathology in Alzheimer’s disease. Int J Alzheimers Dis 2011:759780

    PubMed  PubMed Central  Google Scholar 

  12. Adriaanse SM, van Dijk KR, Ossenkoppele R, Reuter M, Tolboom N, Zwan MD, Yaqub M, Boellaard R, Windhorst AD, van der Flier WM, Scheltens P, Lammertsma AA, Barkhof F, van Berckel BN (2014) The effect of amyloid pathology and glucose metabolism on cortical volume loss over time in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 41(6):1190–1198. https://doi.org/10.1007/s00259-014-2704-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kikuchi M, Hirosawa T, Yokokura M et al (2011) Effects of brain amyloid deposition and reduced glucose metabolism on the default mode of brain function in normal aging. J Neurosci 31:11193–11199

    Article  PubMed  CAS  Google Scholar 

  14. Mosconi L, Andrews RD, Matthews DC (2013) Comparing brain amyloid deposition, glucose metabolism, and atrophy in mild cognitive impairment with and without a family history of dementia. J Alzheimers Dis 35(3):509–524. https://doi.org/10.3233/JAD-121867

    Article  PubMed  CAS  Google Scholar 

  15. Edison P, Archer HA, Hinz R, Hammers A, Pavese N, Tai YF, Hotton G, Cutler D, Fox N, Kennedy A, Rossor M, Brooks DJ (2007) Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology 68(7):501–508. https://doi.org/10.1212/01.wnl.0000244749.20056.d4

    Article  PubMed  CAS  Google Scholar 

  16. Chiaravalloti A, Koch G, Toniolo S et al (2016) Comparison between early-onset and late-onset Alzheimer’s disease patients with amnestic presentation: CSF and 18F-FDG PET study. Dement Geriatr Cogn Dis Extra 6:108–119

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liguori C, Chiaravalloti A, Sancesario G et al (2016) Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 43:2040–2049

    Article  PubMed  CAS  Google Scholar 

  18. Varma A, Snowden J, Lloyd J et al (1999) Evaluation of the NINCDS-ADRDA criteria in the differentiation of Alzheimer’s disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry 66:184–188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Pierantozzi M, Panella M, Palmieri MG et al (2004) Different TMS patterns of intracortical inhibition in early onset Alzheimer dementia and frontotemporal dementia. Clin Neurophysiol 115:2410–2418

    Article  PubMed  CAS  Google Scholar 

  20. Alessandrini M, Pagani M, Napolitano B et al (2013) Early and phasic cortical metabolic changes in vestibular neuritis onset. PLoS One 8:e57596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Puri KS, Suresh KR, Gogtay NJ, Thatte UM (2009) Declaration of Helsinki, 2008: implications for stakeholders in research. J Postgrad Med 55(2):131–134. https://doi.org/10.4103/0022-3859.52846

    Article  PubMed  CAS  Google Scholar 

  22. Chiaravalloti A, Barbagallo G, Ricci M et al (2017) Brain metabolic correlates of CSF tau protein in a large cohort of Alzheimer’s disease patients: a CSF and FDG PET study. Brain Res 1678:116–122

    Article  PubMed  CAS  Google Scholar 

  23. Chiaravalloti A, Ursini F, Fiorentini A et al (2017) Functional correlates of TSH, fT3 and fT4 in Alzheimer disease: a F-18 FDG PET/CT study. Sci Rep 7:6220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bennett CM, Wolford GL, Miller MB (2009) The principled control of false positives in neuroimaging. Soc Cogn Affect Neurosci 4(4):417–422. https://doi.org/10.1093/scan/nsp053

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lancaster JL, Rainey LH, Summerlin JL, Freitas CS, Fox PT, Evans AC, Toga AW, Mazziotta JC (1997) Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Hum Brain Mapp 5(4):238–242. https://doi.org/10.1002/(SICI)1097-0193(1997)5:4<238::AID-HBM6>3.0.CO;2-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Soonawala D, Amin T, Ebmeier KP et al (2002) Statistical parametric mapping of (99m)Tc-HMPAO-SPECT images for the diagnosis of Alzheimer’s disease: normalizing to cerebellar tracer uptake. NeuroImage 17:1193–1202

    Article  PubMed  Google Scholar 

  27. Schmahmann JD, Doyon J, McDonald D et al (1999) Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. NeuroImage 10:233–260

    Article  PubMed  CAS  Google Scholar 

  28. Cohen AD, Klunk WE (2014) Early detection of Alzheimer’s disease using PiB and FDG PET. Neurobiol Dis 72 Pt A:117–122

    Article  PubMed  CAS  Google Scholar 

  29. Petrie EC, Cross DJ, Galasko D, Schellenberg GD, Raskind MA, Peskind ER, Minoshima S (2009) Preclinical evidence of Alzheimer changes: convergent cerebrospinal fluid biomarker and fluorodeoxyglucose positron emission tomography findings. Arch Neurol 66(5):632–637. https://doi.org/10.1001/archneurol.2009.59

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vukovich R, Perneczky R, Drzezga A, Förstl H, Kurz A, Riemenschneider M (2009) Brain metabolic correlates of cerebrospinal fluid beta-amyloid 42 and tau in Alzheimer’s disease. Dement Geriatr Cogn Disord 27(5):474–480. https://doi.org/10.1159/000218080

    Article  PubMed  CAS  Google Scholar 

  31. Grimmer T, Riemenschneider M, Forstl H et al (2009) Beta amyloid in Alzheimer’s disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid. Biol Psychiatry 65:927–934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Takahashi R, Ishii K, Yokoyama K, For The Alzheimer SDNIEY (2017) Validation of a new imaging technique using the glucose metabolism to amyloid deposition ratio in the diagnosis of Alzheimer’s disease. Curr Alzheimer Res 14(2):161–168. https://doi.org/10.2174/1567205013666160620122346

    Article  PubMed  CAS  Google Scholar 

  33. Altmann A, Ng B, Landau SM, Jagust WJ, Greicius MD (2015) Regional brain hypometabolism is unrelated to regional amyloid plaque burden. Brain 138(12):3734–3746. https://doi.org/10.1093/brain/awv278

    Article  PubMed  PubMed Central  Google Scholar 

  34. Furst AJ, Lal RA (2011) Amyloid-beta and glucose metabolism in Alzheimer’s disease. J Alzheimers Dis 26(Suppl 3):105–116

    Article  PubMed  CAS  Google Scholar 

  35. Cohen AD, Price JC, Weissfeld LA, James J, Rosario BL, Bi W, Nebes RD, Saxton JA, Snitz BE, Aizenstein HA, Wolk DA, DeKosky ST, Mathis CA, Klunk WE (2009) Basal cerebral metabolism may modulate the cognitive effects of Abeta in mild cognitive impairment: an example of brain reserve. J Neurosci 29(47):14770–14778. https://doi.org/10.1523/JNEUROSCI.3669-09.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Klupp E, Grimmer T, Tahmasian M et al (2015) Prefrontal hypometabolism in Alzheimer disease is related to longitudinal amyloid accumulation in remote brain regions. J Nucl Med 56:399–404

    Article  PubMed  CAS  Google Scholar 

  37. Perani D (2014) FDG-PET and amyloid-PET imaging: the diverging paths. Curr Opin Neurol 27(4):405–413. https://doi.org/10.1097/WCO.0000000000000109

    Article  PubMed  CAS  Google Scholar 

  38. Murray J, Tsui WH, Li Y et al (2014) FDG and amyloid PET in cognitively normal individuals at risk for late-onset Alzheimer’s disease. Adv Mol Imaging 4(02):15–26. https://doi.org/10.4236/ami.2014.42003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Tiziana Martino (IRCCS Neuromed) for data collection.

Financial Support

The Authors declare that they do not receive financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostino Chiaravalloti.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed Consent

Informed consent was obtained accordingly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiaravalloti, A., Castellano, A.E., Ricci, M. et al. Coupled Imaging with [18F]FBB and [18F]FDG in AD Subjects Show a Selective Association Between Amyloid Burden and Cortical Dysfunction in the Brain. Mol Imaging Biol 20, 659–666 (2018). https://doi.org/10.1007/s11307-018-1167-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-018-1167-1

Key words

Navigation