Skip to main content

Advertisement

Log in

Evaluation of Tc-99 m Labeled Dimeric GX1 Peptides for Imaging of Colorectal Cancer Vasculature

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to evaluate the potential of PEGylated dimeric GX1 peptide as a radiotracer for imaging of colorectal cancer vasculature in a LoVo tumor xenografted mouse model.

Procedures

The [99mTc]PEG-(GX1)2 peptide was synthesized and identified. Confocal immunofluorescence analysis, receptor binding assay, and competitive inhibition assay were performed to evaluate the binding specificity and the receptor binding affinity of PEG-(GX1)2 to Co-human umbilical vein endothelial cells (HUVECs). Single photon emission computed tomography imaging and biodistribution were performed to evaluate the targeting ability of PEG-(GX1)2 to colorectal cancer.

Results

The studies in vitro suggested that PEG-(GX1)2 co-localized with Factor VIII in the perinuclear cytoplasm of Co-HUVECs and bound specifically to Co-HUVECs with a high affinity. The studies in vivo demonstrated that the targeting efficacy of PEG-(GX1)2 was superior to GX1.

Conclusions

PEGylation improved the affinity and the targeting ability of the GX1 peptide. PEG-(GX1)2 is a more promising probe for imaging of colorectal vasculature than GX1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Komizu Y, Ueoka H, Goto K, Ueoka R (2011) Remarkable inhibitory effects of hybrid liposomes on growth of human colon cancer cells through induction of cell cycle arrest along with apoptosis. Int J Nanomedicine 6:1913–1920

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Danaei G, Vander HS, Lopez AD et al (2005) Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. Lancet 366:1784–1793

    Article  PubMed  Google Scholar 

  3. Center MM, Jemal A, Ward E (2009) International trends in colorectal cancer incidence rates. Cancer Epidemiol Biomarkers Prev 18:1688–1694

    Article  PubMed  Google Scholar 

  4. Jia Y, Liu M, Huang W et al (2012) Recombinant human endostatin endostar inhibits tumor growth and metastasis in a mouse xenograft model of colon cancer. Pathol Oncol Res 18:315–323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Zhi M, Wu KC, Dong L et al (2004) Characterization of a specific phage-displayed peptide binding to vasculature of human gastric cancer. Cancer Biol Ther 3:1232–1235

    Article  CAS  PubMed  Google Scholar 

  6. Chen K, Sun X, Niu G et al (2012) Evaluation of 64Cu labeled GX1: a phage display peptide probe for PET imaging of tumor vasculature. Mol Imaging Biol 14:96–105

    Article  PubMed Central  PubMed  Google Scholar 

  7. Chen K, Yap LP, Park R et al (2012) A Cy5.5-labeled phage-displayed peptide probe for near-infrared fluorescence imaging of tumor vasculature in living mice. Amino Acids 42:1329–1337

    Article  CAS  PubMed  Google Scholar 

  8. Cao S, Liu Y, Li X et al (2009) Expression, purification, and characterization of recombinant protein GX1-rmhTNFalpha. Mol Biotechnol 43:1–7

    Article  CAS  PubMed  Google Scholar 

  9. Chen B, Cao S, Zhang Y et al (2009) A novel peptide (GX1) homing to gastric cancer vasculature inhibits angiogenesis and cooperates with TNF alpha in anti-tumor therapy. BMC Cell Biol 10:63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hui X, Han Y, Liang S et al (2008) Specific targeting of the vasculature of gastric cancer by a new tumor-homing peptide CGNSNPKSC. J Control Release 131:86–93

    Article  CAS  PubMed  Google Scholar 

  11. Li W, Lang L, Niu G et al (2012) N-Succinimidyl 4-[(18)F]-fluoromethylbenzoate-labeled dimeric RGD peptide for imaging tumor integrin expression. Amino Acids 43:1349–1357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Guo N, Lang L, Gao H et al (2012) Quantitative analysis and parametric imaging of 18 F-labeled monomeric and dimeric RGD peptides using compartment model. Mol Imaging Biol 14:743–752

    Article  PubMed Central  PubMed  Google Scholar 

  13. Liu Z, Shi J, Jia B et al (2011) Two (9)(0)Y-labeled multimeric RGD peptides RGD4 and 3PRGD2 for integrin targeted radionuclide therapy. Mol Pharm 8:591–599

    Article  CAS  PubMed  Google Scholar 

  14. Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Liang S, Lin T, Ding J et al (2006) Screening and identification of vascular-endothelial-cell-specific binding peptide in gastric cancer. J Mol Med (Berl) 84:764–773

    Article  CAS  Google Scholar 

  16. Strippoli R, Benedicto I, Foronda M et al (2010) p38 maintains E-cadherin expression by modulating TAK1-NF-kappa B during epithelial-to-mesenchymal transition. J Cell Sci 123:4321–4331

    Article  CAS  PubMed  Google Scholar 

  17. Hussain T, Nguyen QT (2014) Molecular imaging for cancer diagnosis and surgery. Adv Drug Deliv Rev 66:90–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chen K, Chen X (2010) Design and development of molecular imaging probes. Curr Top Med Chem 10:1227–1236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Cai W, Gambhir SS, Chen X (2008) Chapter 7. Molecular imaging of tumor vasculature. Methods Enzymol 445:141–176

    Article  CAS  PubMed  Google Scholar 

  20. Chen K, Chen X (2011) Positron emission tomography imaging of cancer biology: current status and future prospects. Semin Oncol 38:70–86

    Article  PubMed Central  PubMed  Google Scholar 

  21. Palomero J, Vegliante MC, Rodriguez ML, et al (2014) SOX11 promotes tumor angiogenesis through transcriptional regulation of PDGFA in mantle cell lymphoma. Blood

  22. Shao Y, Liang W, Kang F et al (2014) A direct comparison of tumor angiogenesis with (68)Ga-labeled NGR and RGD peptides in HT-1080 tumor xenografts using microPET imaging. Amino Acids 46:2355–2364

    Article  CAS  PubMed  Google Scholar 

  23. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  24. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18

    Article  CAS  PubMed  Google Scholar 

  25. Hollenbach M, Stoll SJ, Jorgens K et al (2013) Different regulation of physiological and tumor angiogenesis in zebrafish by protein kinase D1 (PKD1). PLoS One 8:e68033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  CAS  PubMed  Google Scholar 

  27. Seneviratne D, Ma J, Tan X, et al (2014) Genomic instability causes HGF gene activation in colon cancer cells, promoting their resistance to necroptosis. Gastroenterology

  28. Vernin C, Thenoz M, Pinatel C et al (2014) HTLV-1 bZIP factor HBZ promotes cell proliferation and genetic instability by activating oncomiRs. Cancer Res 74:6082–6093

    Article  CAS  PubMed  Google Scholar 

  29. Folkman J (2003) Angiogenesis and apoptosis. Semin Cancer Biol 13:159–167

    Article  CAS  PubMed  Google Scholar 

  30. Neri D, Bicknell R (2005) Tumour vascular targeting. Nat Rev Cancer 5:436–446

    Article  CAS  PubMed  Google Scholar 

  31. Deutscher SL (2010) Phage display in molecular imaging and diagnosis of cancer. Chem Rev 110:3196–3211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ueberberg S, Schneider S (2010) Phage library-screening: a powerful approach for generation of targeting-agents specific for normal pancreatic islet-cells and islet-cell carcinoma in vivo. Regul Pept 160:1–8

    Article  CAS  PubMed  Google Scholar 

  33. Dezsi L, Fulop T, Meszaros T et al (2014) Features of complement activation-related pseudoallergy to liposomes with different surface charge and PEGylation: comparison of the porcine and rat responses. J Control Release 195:2–10

    Article  CAS  PubMed  Google Scholar 

  34. Holm LS, Mcumber A, Rasmussen JE et al (2014) The effect of protein PEGylation on physical stability in liquid formulation. J Pharm Sci 103:3043–3054

    Article  CAS  PubMed  Google Scholar 

  35. Vine KL, Lobov S, Chandran VI, et al (2014) Improved pharmacokinetic and biodistribution properties of the selective urokinase inhibitor PAI-2 (SerpinB2) by site-specific PEGylation: implications for drug delivery. Pharm Res DOI 1-.1007/s11096-014-1517-x

  36. Liu J, Wang Z, He J et al (2014) Effect of site-specific PEGylation on the fibrinolytic activity, immunogenicity, and pharmacokinetics of staphylokinase. Acta Biochim Biophys Sin (Shanghai) 46:782–791

    Article  CAS  Google Scholar 

  37. Dijkgraaf I, Yim CB, Franssen GM et al (2011) PET imaging of alphavbeta(3) integrin expression in tumours with (6)(8)Ga-labelled mono-, di- and tetrameric RGD peptides. Eur J Nucl Med Mol Imaging 38:128–137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Liu S, Hsieh WY, Jiang Y et al (2007) Evaluation of a (99 m)Tc-labeled cyclic RGD tetramer for noninvasive imaging integrin alpha(v)beta3-positive breast cancer. Bioconjug Chem 18:438–446

    Article  PubMed  Google Scholar 

  39. Henriques ST, Costa J, Castanho MA (2005) Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential. Biochemistry-Us 44:10189–10198

    Article  Google Scholar 

  40. Deshayes S, Heitz A, Morris MC et al (2004) Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis. Biochemistry-Us 43:1449–1457

    Article  CAS  Google Scholar 

  41. Li YJ, Li XH, Wang LF et al (2014) Therapeutic efficacy of a novel non-peptide alphavbeta3 integrin antagonist for pathological retinal angiogenesis in mice. Exp Eye Res 129:119–126

    Article  CAS  PubMed  Google Scholar 

  42. Lai KC, Hsu SC, Yang JS et al (2014) Diallyltrisulfide inhibits migration, invasion and angiogenesis of human colon cancer HT-29 cells and umbilical vein endothelial cells, and suppresses murine xenograft tumour growth. J Cell Mol Med. doi:10.1111/jcmm.12486

    Google Scholar 

  43. Segaliny AI, Mohamadi A, Dizier B et al (2014) Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment. Int J Cancer. doi:10.1002/ijc.29376

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 81090270, No. 81090273, No. 81471717 and No. 81371615), the National Key and Basic Research Development Program of China (No. 2010CB529302), and Natural Science Foundation of Shaanxi Province (2013 K12-05-11). We thank Dr. Zhe Wang and Wenhui Ma for their help in SPECT imaging.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaichun Wu.

Additional information

Jipeng Yin, Xiaoli Hui and Liping Yao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Hui, X., Yao, L. et al. Evaluation of Tc-99 m Labeled Dimeric GX1 Peptides for Imaging of Colorectal Cancer Vasculature. Mol Imaging Biol 17, 661–670 (2015). https://doi.org/10.1007/s11307-015-0838-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0838-4

Key words

Navigation