Skip to main content
Log in

Radiosynthesis of [124I]Iodometomidate and Biological Evaluation Using Small-Animal PET

  • Brief Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The application of radiolabelled inhibitors of cytochrome P450 enzymes is a novel approach for molecular imaging of adrenocortical masses to detect adrenal tumours. One potential tracer is radiolabelled iodometomidate (IMTO) with a common option for scintigraphic diagnosis and therapeutic applications. The aim of this study was to radiolabel iodometomidate with the positron-emitting radionuclide iodine-124 (124I) for the investigation of the biological behaviour and pharmacokinetics with positron emission tomography (PET).

Procedures

[124I]IMTO has been synthesized by oxidative radioiodo-destannylation, purified via semi-preparative HPLC and formulated in acetate-buffered saline, which contained ascorbic acid and ethanol to avoid radiolytic decomposition. Biological evaluation was performed in rats which received 5.5 ± 0.7 MBq [124I]IMTO in vivo. The radioactivity distribution (n = 3) has been dynamically imaged from 0–120 min after intravenous (i.v.) injection by small-animal PET. Regions of interest have been defined manually in the reconstructed PET images, and the activity concentration was expressed as percent injected dose per gram tissue (%ID/g).

Results

[124I]IMTO was prepared with a radiochemical yield of 83 ± 5 % (n = 3) and a radiochemical purity of >97 %. The final formulation of [124I]IMTO was stable for up to 48 h at room temperature. Two hours after i.v. administration in rats, radioactivity concentration in the adrenal glands were 2.1 ± 0.3 %ID/g, which was sufficient to achieve highest-contrast adrenal PET images.

Conclusions

In the present study, the biological characteristics of radioiodinated metomidate were evaluated. [124I]IMTO appears as an attractive PET tracer for imaging of adrenals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Gross MD, Shapiro B, Francis IR et al (1994) Scintigraphic evaluation of clinically silent adrenal masses. J Nucl Med 35:1145–1152

    CAS  PubMed  Google Scholar 

  2. Grumbach MM, Biller BM, Braunstein GD et al (2003) Management of the clinically inapparent adrenal mass ("incidentaloma"). Ann Intern Med 138:424–429

    Article  PubMed  Google Scholar 

  3. Barzon L, Sonino N, Fallo F et al (2003) Prevalence and natural history of adrenal incidentalomas. Eur J Endocrinol 149:273–285

    Article  CAS  PubMed  Google Scholar 

  4. Mansmann G, Lau J, Balk E et al (2004) The clinically inapparent adrenal mass: update in diagnosis and management. Endocr Rev 25:309–340

    Article  PubMed  Google Scholar 

  5. Beierwaltes WH, Wieland DM, Ice RD et al (1976) Localization of radiolabeled enzyme inhibitors in the adrenal gland. J Nucl Med 17:998–1002

    CAS  PubMed  Google Scholar 

  6. Forman SA (2011) Clinical and molecular pharmacology of etomidate. Anesthesiology 114:695–707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bergström M, Bonasera TA, Lu L et al (1998) In vitro and in vivo primate evaluation of carbon-11-etomidate and carbon-11-metomidate as potential tracers for PET imaging of the adrenal cortex and its tumors. J Nucl Med 39:982–989

    PubMed  Google Scholar 

  8. Khan TS, Sundin A, Juhlin C et al (2003) 11C-metomidate PET imaging of adrenocortical cancer. Eur J Nucl Med Mol Imaging 30:403–410

    Article  PubMed  Google Scholar 

  9. Mitterhauser M, Wadsak W, Wabnegger L et al (2003) In vivo and in vitro evaluation of [18F]FETO with respect to the adrenocortical and GABAergic system in rats. Eur J Nucl Med Mol Imaging 30:1398–1401

    Article  CAS  PubMed  Google Scholar 

  10. Erlandsson M, Karimi F, Lindhe O, Långström B (2009) 18F-labelled metomidate analogues as adrenocortical imaging agents. Nucl Med Biol 36:435–445

    Article  CAS  PubMed  Google Scholar 

  11. Zettinig G, Mitterhauser M, Wadsak W et al (2004) Positron emission tomography imaging of adrenal masses: 18F-fluorodeoxyglucose and the 11beta-hydroxylase tracer 11C-metomidate. Eur J Nucl Med Mol Imaging 31:1224–1230

    Article  PubMed  Google Scholar 

  12. Burton TJ, Mackenzie IS, Balan K et al (2012) Evaluation of the sensitivity and specificity of 11C-metomidate positron emission tomography (PET)-CT for lateralizing aldosterone secretion by Conn's adenomas. J Clin Endocrinol Metab 97:100–109

    Article  CAS  PubMed  Google Scholar 

  13. Schirbel A, Zolle I, Hammerschmidt F et al (2004) [123/131I]Iodometomidate as a radioligand for functional diagnosis of adrenal disease: synthesis, structural requirements and biodistribution. Radiochim Acta 92:297–303

    Article  CAS  Google Scholar 

  14. Hahner S, Stuermer A, Kreissl M et al (2008) [123I]Iodometomidate for molecular imaging of adrenocortical cytochrome P450 family 11B enzymes. J Clin Endocrinol Metab 93:2358–2365

    Article  CAS  PubMed  Google Scholar 

  15. Kreissl MC, Schirbel A, Fassnacht M et al (2013) [123I]iodometomidate imaging in adenocortical carcinoma. J Clin Endocrinol Metab 98:2755–2764

    Article  CAS  PubMed  Google Scholar 

  16. Hahner S, Kreissl MC, Fassnacht M et al (2012) [131I]iodometomidate for targeted radionuclide therapy of advanced adrenocortical carcinoma. J Clin Endocrinol Metab 97:914–922

    Article  CAS  PubMed  Google Scholar 

  17. Koehler L, Gagnon K, McQuarrie S, Wuest F (2010) Iodine-124: a promising positron emitter for organic PET chemistry. Molecules 15:2686–2718

    Article  CAS  PubMed  Google Scholar 

  18. Lopci E, Chiti A, Castellani MR et al (2011) Matched pairs dosimetry: 124I/131I metaiodobenzylguanidine and 124I/131I and 86Y/90Y antibodies. Eur J Nucl Med Mol Imaging 38(Suppl 1):S28–40

    Article  PubMed  Google Scholar 

  19. Hammerschmidt F, Peric Simov B, Schmidt S et al (2005) Chemoenzymatic synthesis of stannylated metomidate as a precursor for electrophilic radiohalogenations—regioselective alkylation of methyl 1H-imidazole-5-carboxylate. Monatsh Chemie 136:229–239

    Article  CAS  Google Scholar 

  20. Wafelman AR, Konings MC, Hoefnagel CA et al (1994) Synthesis, radiolabelling and stability of radioiodinated m-iodobenzylguanidine, a review. Appl Radiat Isot 45:997–1007

    Article  CAS  PubMed  Google Scholar 

  21. Chakrabarti MC, Le N, Paik CH et al (1996) Prevention of radiolysis of monoclonal antibody during labeling. J Nucl Med 37:1384–1388

    CAS  PubMed  Google Scholar 

  22. Jacobson MS, Dankwart HR, Mahoney DW (2009) Radiolysis of 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) and the role of ethanol and radioactive concentration. Appl Radiat Isot 67:990–995

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Thomas Filip and Maria Zsebedics for their skilful help with the laboratory animal handling and the staff of the radiochemistry laboratory (Seibersdorf Laboratories GmbH) for their continuous support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Kvaternik.

Additional information

Ilse Zolle is deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kvaternik, H., Wanek, T., Hammerschmidt, F. et al. Radiosynthesis of [124I]Iodometomidate and Biological Evaluation Using Small-Animal PET. Mol Imaging Biol 16, 317–321 (2014). https://doi.org/10.1007/s11307-013-0696-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0696-x

Key words

Navigation