Skip to main content

Advertisement

Log in

Non-invasive Bioluminescence Imaging of Myoblast-Mediated Hypoxia-Inducible Factor-1 Alpha Gene Transfer

Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

We tested a novel imaging strategy, in which both the survival of transplanted myoblasts and their therapeutic transgene expression, a recombinant hypoxia-inducible factor-1α (HIF-1α-VP2), can be monitored using firefly luciferase (fluc) and Renilla luciferase (hrl) bioluminescence reporter genes, respectively.

Procedures

The plasmid pUbi-hrl-pUbi-HIF-1α-VP2, which expresses both hrl and HIF-1α-VP2 using two ubiquitin promoters, was characterized in vitro. C2c12 myoblasts stably expressing fluc and transiently transfected with pUbi-hrl-pUbi-HIF-1α-VP2 were injected into the mouse hindlimb. Both hrl and fluc expression were monitored using bioluminescence imaging (BLI).

Results

Strong correlations existed between the expression of hRL and each of HIF-1α-VP2, VEGF, and PlGF (r 2 > 0.83, r 2 > 0.82, and r 2 > 0.97, respectively). In vivo, both transplanted cells and HIF-1α-VP2 transgene expression were successfully imaged using BLI.

Conclusions

An objective evaluation of myoblast-mediated gene transfer in living mice can be performed by monitoring both the survival and the transgene expression of transplanted myoblasts using the techniques developed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Giordano FJ, Ping P, McKirnan MD et al (1996) Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 2:534–539

    Article  PubMed  CAS  Google Scholar 

  2. Gao MH, Lai NC, McKirnan MD et al (2004) Increased regional function and perfusion after intracoronary delivery of adenovirus encoding fibroblast growth factor 4: report of preclinical data. Hum Gene Ther 15:574–587

    Article  PubMed  CAS  Google Scholar 

  3. Kocher AA, Schuster MD, Szabolcs MJ et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436

    Article  PubMed  CAS  Google Scholar 

  4. Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P (2001) Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann N Y Acad Sci 938:221–229, discussion 229–230

    Article  PubMed  CAS  Google Scholar 

  5. Reffelmann T, Kloner RA (2003) Cellular cardiomyoplasty—cardiomyocytes, skeletal myoblasts, or stem cells for regenerating myocardium and treatment of heart failure? Cardiovasc Res 58:358–368

    Article  PubMed  CAS  Google Scholar 

  6. Kim C, Li RK, Li G, Zhang Y, Weisel RD, Yau TM (2007) Effects of cell-based angiogenic gene therapy at 6 months: persistent angiogenesis and absence of oncogenicity. Ann Thorac Surg 83:640–646

    Article  PubMed  Google Scholar 

  7. Rosenzweig A (2006) Cardiac cell therapy—mixed results from mixed cells. N Engl J Med 355:1274–1277

    Article  PubMed  CAS  Google Scholar 

  8. Deuse T, Peter C, Fedak PW et al (2009) Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation 120:S247–S254

    Article  PubMed  CAS  Google Scholar 

  9. Mangi AA, Noiseux N, Kong D et al (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9:1195–1201

    Article  PubMed  CAS  Google Scholar 

  10. Suzuki K, Murtuza B, Smolenski RT et al (2001) Cell transplantation for the treatment of acute myocardial infarction using vascular endothelial growth factor-expressing skeletal myoblasts. Circulation 104:I207–I212

    Article  PubMed  CAS  Google Scholar 

  11. Yau TM, Kim C, Li G, Zhang Y, Weisel RD, Li RK (2005) Maximizing ventricular function with multimodal cell-based gene therapy. Circulation 112:I123–I128

    Article  PubMed  Google Scholar 

  12. Beeres SL, Bengel FM, Bartunek J et al (2007) Role of imaging in cardiac stem cell therapy. J Am Coll Cardiol 49:1137–1148

    Article  PubMed  Google Scholar 

  13. Bengel FM, Schachinger V, Dimmeler S (2005) Cell-based therapies and imaging in cardiology. Eur J Nucl Med Mol Imaging 32(Suppl 2):S404–S416

    Article  PubMed  Google Scholar 

  14. Frangioni JV, Hajjar RJ (2004) In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation 110:3378–3383

    Article  PubMed  Google Scholar 

  15. Wu JC, Chen IY, Sundaresan G et al (2003) Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108:1302–1305

    Article  PubMed  Google Scholar 

  16. Wu JC, Chen IY, Wang Y et al (2004) Molecular imaging of the kinetics of vascular endothelial growth factor gene expression in ischemic myocardium. Circulation 110:685–691

    Article  PubMed  CAS  Google Scholar 

  17. Gheysens O, Lin S, Cao F et al (2006) Noninvasive evaluation of immunosuppressive drug efficacy on acute donor cell survival. Mol Imaging Biol 8:163–170

    Article  PubMed  Google Scholar 

  18. Ray P, De A, Min JJ, Tsien RY, Gambhir SS (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64:1323–1330

    Article  PubMed  CAS  Google Scholar 

  19. Cao F, Drukker M, Lin S et al (2007) Molecular imaging of embryonic stem cell misbehavior and suicide gene ablation. Cloning Stem Cells 9:107–117

    Article  PubMed  CAS  Google Scholar 

  20. Chen IY, Wu JC, Min JJ et al (2004) Micro-positron emission tomography imaging of cardiac gene expression in rats using bicistronic adenoviral vector-mediated gene delivery. Circulation 109:1415–1420

    Article  PubMed  Google Scholar 

  21. Chan CT, Paulmurugan R, Gheysens OS, Kim J, Chiosis G, Gambhir SS (2008) Molecular imaging of the efficacy of heat shock protein 90 inhibitors in living subjects. Cancer Res 68:216–226

    Article  PubMed  CAS  Google Scholar 

  22. Chen IY, Gheysens O, Ray S et al (2010) Indirect imaging of cardiac-specific transgene expression using a bidirectional two-step transcriptional amplification strategy. Gene Ther 17:827–838

    Article  PubMed  CAS  Google Scholar 

  23. Muller-Ehmsen J, Peterson KL, Kedes L et al (2002) Rebuilding a damaged heart: long-term survival of transplanted neonatal rat cardiomyocytes after myocardial infarction and effect on cardiac function. Circulation 105:1720–1726

    Article  PubMed  Google Scholar 

  24. Murry CE, Wiseman RW, Schwartz SM, Hauschka SD (1996) Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 98:2512–2523

    Article  PubMed  CAS  Google Scholar 

  25. Shyu KG, Wang MT, Wang BW et al (2002) Intramyocardial injection of naked DNA encoding HIF-1alpha/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc Res 54:576–583

    Article  PubMed  CAS  Google Scholar 

  26. Vincent KA, Shyu KG, Luo Y et al (2000) Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1alpha/VP16 hybrid transcription factor. Circulation 102:2255–2261

    PubMed  CAS  Google Scholar 

  27. Patel TH, Kimura H, Weiss CR, Semenza GL, Hofmann LV (2005) Constitutively active HIF-1alpha improves perfusion and arterial remodeling in an endovascular model of limb ischemia. Cardiovasc Res 68:144–154

    Article  PubMed  CAS  Google Scholar 

  28. Azarnoush K, Maurel A, Sebbah L et al (2005) Enhancement of the functional benefits of skeletal myoblast transplantation by means of coadministration of hypoxia-inducible factor 1alpha. J Thorac Cardiovasc Surg 130:173–179

    Article  PubMed  CAS  Google Scholar 

  29. Isner JM, Vale PR, Symes JF, Losordo DW (2001) Assessment of risks associated with cardiovascular gene therapy in human subjects. Circ Res 89:389–400

    Article  PubMed  CAS  Google Scholar 

  30. Su H, Arakawa-Hoyt J, Kan YW (2002) Adeno-associated viral vector-mediated hypoxia response element-regulated gene expression in mouse ischemic heart model. Proc Natl Acad Sci U S A 99:9480–9485

    Article  PubMed  CAS  Google Scholar 

  31. Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480

    PubMed  CAS  Google Scholar 

  32. Wang GL, Semenza GL (1993) Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 268:21513–21518

    PubMed  CAS  Google Scholar 

  33. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92:5510–5514

    Article  PubMed  CAS  Google Scholar 

  34. Forsythe JA, Jiang BH, Iyer NV et al (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613

    PubMed  CAS  Google Scholar 

  35. Jiang BH, Zheng JZ, Leung SW, Roe R, Semenza GL (1997) Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem 272:19253–19260

    Article  PubMed  CAS  Google Scholar 

  36. Jiang BH, Rue E, Wang GL, Roe R, Semenza GL (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 271:17771–17778

    Article  PubMed  CAS  Google Scholar 

  37. Rajagopalan S, Olin J, Deitcher S et al (2007) Use of a constitutively active hypoxia-inducible factor-1alpha transgene as a therapeutic strategy in no-option critical limb ischemia patients: phase I dose-escalation experience. Circulation 115:1234–1243

    PubMed  CAS  Google Scholar 

  38. Kilian EG, Sadoni S, Vicol C et al (2010) Myocardial transfection of hypoxia inducible factor-1alpha via an adenoviral vector during coronary artery bypass grafting—a multicenter phase I and safety study. Circ J 74:916–924

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the NCI ICMIC P50CA114747 (S.S.G.) and Fund for Scientific Research Belgium-Flanders (O.G.).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiv S. Gambhir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gheysens, O., Chen, I.Y., Rodriguez-Porcel, M. et al. Non-invasive Bioluminescence Imaging of Myoblast-Mediated Hypoxia-Inducible Factor-1 Alpha Gene Transfer. Mol Imaging Biol 13, 1124–1132 (2011). https://doi.org/10.1007/s11307-011-0471-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-011-0471-9

Key words

Navigation