Skip to main content

Advertisement

Log in

Assessing p-Glycoprotein (Pgp) Activity In Vivo Utilizing 68Ga–Schiff Base Complexes

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The p-glycoprotein (Pgp) is the most prominent member of active drug transporters leading to a multidrug-resistant phenotype. For identification of tumors functionally overexpressing Pgp in vivo, non-invasive imaging techniques are needed.

Procedures

Six Schiff base compounds were synthesized and labeled with 68Ge/68Ga generator-derived 68Ga. The compounds were studied in vitro in Pgp-positive tumor cells. The property of being a Pgp substrate was tested by comparison of the tracers uptake in R-3327 Dunning prostate carcinoma AT1 cells in presence and absence of the Pgp-inhibitor verapamil. In vivo investigations were performed with tumor-bearing rats imaged with micro-positron emission tomography.

Results

All ligands were labeled with 68Ga in yields of >92% beside one (~55%). The tracers showed different accumulation within the cells in vitro (4–60%). In blocking experiments, the ratio (blocked to unblocked) varied from 1.8 to 1.0. For in vivo experiments, 68Ga–ENBDMPI and 68Ga–MFL6.MZ were selected. The tumors showed specific uptake of the tracer. Direct intratumoral injection of verapamil increased the tracer concentration by ~25% reflecting the functional Pgp activity.

Conclusions

Two 68Ga-labeled ligands appear to be valuable for imaging non-invasively the intratumoral Pgp activity. On a long term, patients with multidrug-resistant tumors pre-therapeutically may be identified prior to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Pgp:

p-glycoprotein

VPL:

verapamil

MDR:

multidrug resistance

References

  1. Schinkel AH, Jonker JW (2003) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 55:3–29

    Article  PubMed  CAS  Google Scholar 

  2. Higgins CF (2001) ABC transporters: physiology, structure and mechanism—an overview. Res Microbiol 152:205–210

    Article  PubMed  CAS  Google Scholar 

  3. Chang G (2003) Multidrug resistance ABC transporters. FEBS Lett 555:102–105

    Article  PubMed  CAS  Google Scholar 

  4. Fojo T, Bates S (2003) Strategies for reversing drug resistance. Oncogene 22:7512–7523

    Article  PubMed  CAS  Google Scholar 

  5. Hendrikse NH, Franssen EJ, van der Graaf WT, Vaalburg W, de Vries EG (1999) Visualization of multidrug resistance in vivo. Eur J Nucl Med 26:283–293

    Article  PubMed  CAS  Google Scholar 

  6. Liu Z, Stevenson GD, Barrett HH, Kastis GA, Bettan M, Furenlid LR et al (2004) Imaging recognition of multidrug resistance in human breast tumors using 99mTc-labeled monocationic agents and a high-resolution stationary SPECT system. Nucl Med Biol 31:53–65

    Article  PubMed  CAS  Google Scholar 

  7. Kurdziel KA, Kalen JD, Hirsch JI, Wilson JD, Agarwal R, Barrett D et al (2007) Imaging multidrug resistance with 4-[18F]fluoropaclitaxel. Nucl Med Biol 34:823–831

    Article  PubMed  CAS  Google Scholar 

  8. Vaalburg W, Hendrikse NH, Elsinga PH, Bart J, Van WA (2005) P-glycoprotein activity and biological response. Toxicol Appl Pharmacol 207:257–260

    Article  PubMed  CAS  Google Scholar 

  9. Hsiao P, Sasongko L, Link JM, Mankoff DA, Muzi M, Collier AC et al (2006) Verapamil P-glycoprotein transport across the rat blood-brain barrier: cyclosporine, a concentration inhibition analysis, and comparison with human data. J Pharmacol Exp Ther 317:704–710

    Article  PubMed  CAS  Google Scholar 

  10. Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA et al (2007) Processing of generator-produced 68Ga for medical application. J Nucl Med 48:1741–1748

    Article  PubMed  CAS  Google Scholar 

  11. Asti M, De Pietri G, Fraternali A, Grassi E, Sghedoni R, Fioroni F et al (2008) Validation of 68Ge/68Ga generator processing by chemical purification for routine clinical application of 68Ga-DOTATOC. Nucl Med Biol 35:721–724

    Article  PubMed  CAS  Google Scholar 

  12. Sharma V, Beatty A, Wey SP, Dahlheimer J, Pica CM, Crankshaw CL et al (2000) Novel gallium(III) complexes transported by MDR1 P-glycoprotein: potential PET imaging agents for probing P-glycoprotein-mediated transport activity in vivo. Chem Biol 7:335–343

    Article  PubMed  CAS  Google Scholar 

  13. Sharma V, Prior JL, Belinsky MG, Kruh GD, Piwnica-Worms D (2005) Characterization of a 67Ga/68Ga radiopharmaceutical for SPECT and PET of MDR1 P-glycoprotein transport activity in vivo: validation in multidrug-resistant tumors and at the blood–brain barrier. J Nucl Med 46:354–364

    PubMed  CAS  Google Scholar 

  14. Thews O, Gassner B, Kelleher DK, Schwerdt G, Gekle M (2006) Impact of extracellular acidity on the activity of p-glycoprotein and the cytotoxicity of chemotherapeutic drugs. Neoplasia 8:143–152

    Article  PubMed  CAS  Google Scholar 

  15. Workman P, Twentyman P, Balkwill F, Balmain A, Chaplin DJ, Double JA et al (1998) United Kingdom Co-ordinating Committee on Cancer Research (UKCCCR) Guidelines for the Welfare of Animals in Experimental Neoplasia (2nd edit.). Br J Cancer 77:1–10

    Google Scholar 

  16. Kunikane H, Zalupski MM, Ramachandran C, Kuruga MA, Lucas D, Ryan JR et al (1997) Flow cytometric analysis of p-glycoprotein expression and drug efflux in human soft tissue and bone sarcomas. Cytometry 30:197–203

    Article  PubMed  CAS  Google Scholar 

  17. Hendrikse NH, de Vries EG, Eriks-Fluks L, van der Graaf WT, Hospers GA, Willemsen AT et al (1999) A new in vivo method to study P-glycoprotein transport in tumors and the blood–brain barrier. Cancer Res 59:2411–2416

    PubMed  CAS  Google Scholar 

  18. Syvänen S, Blomquist G, Sprycha M, Höglund AU, Roman M, Eriksson O et al (2006) Duration and degree of cyclosporin induced P-glycoprotein inhibition in the rat blood–brain barrier can be studied with PET. Neuroimage 32:1134–1141

    Article  PubMed  Google Scholar 

  19. Wang JH, Scollard DA, Teng S, Reilly RM, Piquette-Miller M (2005) Detection of P-glycoprotein activity in endotoxemic rats by 99mTc-sestamibi imaging. J Nucl Med 46:1537–1545

    PubMed  CAS  Google Scholar 

  20. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65:613–621

    Article  PubMed  CAS  Google Scholar 

  21. Trach P, Afahaene N, Nowak M, Thews O (2008) Impact of environmental parameters on the activity of the p-glycoprotein. Acta Physiol 192(suppl 663):107

    Google Scholar 

  22. Bigott HM, Prior JL, Piwnica-Worms DR, Welch MJ (2005) Imaging multidrug resistance P-glycoprotein transport function using microPET with technetium-99 m-sestamibi. Mol Imaging 4:30–39

    PubMed  Google Scholar 

  23. Marian T, Szabo G, Goda K, Nagy H, Szincsak N, Juhasz I et al (2003) In vivo and in vitro multitracer analyses of P-glycoprotein expression-related multidrug resistance. Eur J Nucl Med Mol Imaging 30:1147–1154

    Article  PubMed  CAS  Google Scholar 

  24. Sauvant C, Nowak M, Wirth C, Schneider B, Riemann A, Gekle M et al (2008) Acidosis induces multi-drug resistance in rat prostate cancer cells (AT1) in vitro and in vivo by increasing the activity of the p-glycoprotein via activation of p38. Int J Cancer 123:2532–2542

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the European Union (project COST D38 and BM0607) and the Deutsche Krebshilfe (grant 109136).

Conflict of Interest Disclosure

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Rösch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fellner, M., Dillenburg, W., Buchholz, HG. et al. Assessing p-Glycoprotein (Pgp) Activity In Vivo Utilizing 68Ga–Schiff Base Complexes. Mol Imaging Biol 13, 985–994 (2011). https://doi.org/10.1007/s11307-010-0410-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0410-1

Key Words

Navigation