Skip to main content
Log in

Combined transcriptomic and metabolomic analysis of Salmonella in the presence or absence of PhoP–PhoQ system under low Mg2+ conditions

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Previous reports revealed the role played by Salmonella PhoP–PhoQ system in virulence activation, antimicrobial tolerance and intracellular survival, the impact of PhoP–PhoQ on cell metabolism has been less extensively described.

Objectives

The aim of this study is to address whether and how the PhoP–PhoQ system affects the cell metabolism of Salmonella.

Methods

We constructed a Salmonella phoP deletion mutant strain TT-81 (PhoP-OFF), a Salmonella PhoP constitutively expressed strain TT-82 (PhoP-ON) and a wild-type Salmonella PhoP strain TT-80 (PhoP-N), using P22-mediated generalized transduction or λ Red-mediated targeted mutagenesis. We then measured the in vitro growth kinetics of all test strains and determined their metabolomic and transcriptomic profiles using gas chromatography coupled with tandem mass spectrometry (GC–MS/MS) and RNA-seq technique, respectively.

Results

Low-Mg2+ conditions impaired the growth of the phoP deletion mutant strain TT-81 (PhoP-OFF) dramatically. 42 metabolites in the wild-type PhoP strain TT-80 (PhoP-N) and 28 metabolites in the PhoP constitutively expressed strain TT-82 (PhoP-ON) changed by the absence of phoP. In contrast, the level of 19 compounds in TT-80 (PhoP-N) changed comparing to the PhoP constitutively expressed strain TT-82 (PhoP-N). The mRNA level of 95 genes in TT-80 (PhoP-N) changed when phoP was disrupted, wherein 78 genes downregulated and 17 genes upregulated. 106 genes were determined to be differentially expressed between TT-81 (PhoP-OFF) and TT-82 (PhoP-ON). While only 16 genes were found to differentially expressed between TT-82 (PhoP-ON) and TT-80 (PhoP-N).

Conclusion

Our findings confirmed the impact of PhoP–PhoQ system on lipopolysaccharide (LPS) modification, energy metabolism, and the biosynthesis or transport of amino acids. Most importantly, we demonstrated that the turnover of a given metabolite could respond differentially to the level of phoP. Taken together, the present study provided new insights into the adaptation of Salmonella to the host environment and helped to characterize the impact of the PhoP–PhoQ system on the cell metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Archer, C. D., & Elliott, T. (1995). Transcriptional control of the nuo operon which encodes the energy-conserving NADH dehydrogenase of Salmonella typhimurium. Journal of Bacteriology, 177, 2335–2342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bader, M. W., Sanowar, S., Daley, M. E., Schneider, A. R., Cho, U., Xu, W., et al. (2005). Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell, 3, 461–472.

    Article  Google Scholar 

  • Brogden, K. A. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 3, 238–250.

    Article  CAS  PubMed  Google Scholar 

  • Calhoun, D. H., Bonner, C. A., Gu, W., Xie, G., & Jensen, R. A. (2001). The emerging periplasm-localized subclass of AroQ chorismate mutases, exemplified by those from Salmonella typhimurium and Pseudomonas aeruginosa. Genome Biology, 2, 1–16.

    Article  Google Scholar 

  • Casino, P., Rubio, V., & Marina, A. (2010). The mechanism of signal transduction by two-component systems. Current Opinion in Structural Biology, 20, 763–771.

    Article  CAS  PubMed  Google Scholar 

  • Choi, E., Groisman, E. A., & Shin, D. (2009). Activated by different signals, the PhoP/PhoQ two-component system differentially regulates metal uptake. Journal of Bacteriology, 191, 7174–7181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 97, 6640–6645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fields, P. I., Swanson, R. V., Haidaris, C. G., & Heffron, F. (1986). Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proceedings of the National Academy of Sciences of the United States of America, 83, 5189–5193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García Véscovi, E., Soncini, F. C., & Groisman, E. A. (1996). Mg2+ as an extracellular signal: Environmental regulation of Salmonella virulence. Cell, 84, 165–174.

    Article  PubMed  Google Scholar 

  • Gunn, J. S., Lim, K. B., Krueger, J., Kim, K., Guo, L., Hackett, M., et al. (1998). PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Molecular Microbiology, 27, 1171–1182.

    Article  CAS  PubMed  Google Scholar 

  • Guo, L., Lim, K. B., Gunn, J. S., Bainbridge, B., Darveau, R. P., Hackett, M., et al. (1997). Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science, 276, 250–253.

    Article  CAS  PubMed  Google Scholar 

  • Helander, I. M., Kilpeläinen, I., & Vaara, M. (1994). Increased substitution of phosphate groups in lipopolysaccharides and lipid A of the polymyxin-resistant pmrA mutants of Salmonella typhimurium: A 31P-NMR study. Molecular Microbiology, 11, 481–487.

    Article  CAS  PubMed  Google Scholar 

  • Hoch, J. A. (2000). Two-component and phosphorelay signal transduction. Current Opinion in Microbiology, 3, 165–170.

    Article  CAS  PubMed  Google Scholar 

  • Kato, A., & Groisman, E. A. (2008). The PhoQ/PhoP regulatory network of Salmonella enterica. Advances in Experimental Medicine and Biology, 631, 7–21.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y. M., Schmidt, B. J., Kidwai, A. S., Jones, M. B., Deatherage Kaiser, B. L., Brewer, H. M., et al. (2013). Salmonella modulates metabolism during growth under conditions that induce expression of virulence genes. Molecular BioSystems, 9, 1522–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, H., Hsu, F. F., Turk, J., & Groisman, E. A. (2004). The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. Journal of Bacteriology, 186, 4124–4133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macheroux, P., Schmid, J., Amrhein, N., & Schaller, A. (1999). A unique reaction in a common pathway: Mechanism and function of chorismate synthase in the shikimate pathway. Planta, 207, 325–334.

    Article  CAS  PubMed  Google Scholar 

  • Malanovic, N., & Lohner, K. (2016). Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals, 9, 59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller, S. I., & Mekalanos, J. J. (1990). Constitutive expression of the phoP regulon attenuates Salmonella virulence and survival within macrophages. Journal of Bacteriology, 172, 2485–2490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitrophanov, A. Y., & Groisman, E. A. (2008). Signal integration in bacterial two-component regulatory systems. Genes Development, 22, 2601–2611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olive, A. J., & Sassetti, C. M. (2016). Metabolic crosstalk between host and pathogen: Sensing, adapting and competing. Nature Review Microbiology, 14, 221–234.

    Article  CAS  Google Scholar 

  • Parish, T., & Stoker, N. G. (2002). The common aromatic amino acid biosynthesis pathway is essential in Mycobacterium tuberculosis. Microbiology, 148, 3069–3077.

    Article  CAS  PubMed  Google Scholar 

  • Perez, J. C., & Groisman, E. A. (2009). Transcription factor function and promoter architecture govern the evolution of bacterial regulons. Proceedings of the National Academy of Sciences of the United States of America, 106, 4319–4324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prost, L. R., Daley, M. E., Le Sage, V., Bader, M. W., Le Moual, H., Klevit, R. E., et al. (2007). Activation of the bacterial sensor kinase PhoQ by acidic pH. Molecular Cell, 26, 165–174.

    Article  CAS  PubMed  Google Scholar 

  • Ren, G., Wang, Z., Li, Y., Hu, X., & Wang, X. (2016). Effects of lipopolysaccharide core sugar deficiency on colanic acid biosynthesis in Escherichia coli. Journal of Bacteriology, 198, 1576–1584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shprung, T., Peleg, A., Rosenfeld, Y., Trieu-Cuot, P., & Shai, Y. (2012). Effect of PhoP-PhoQ activation by broad repertoire of antimicrobial peptides on bacterial resistance. Journal of Biological Chemistry, 287, 4544–4551.

    Article  CAS  PubMed  Google Scholar 

  • Soncini, F. C., García Véscovi, E., Solomon, F., & Groisman, E. A. (1996). Molecular basis of the magnesium deprivation response in Salmonella typhimurium: Identification of PhoP-regulated genes. Journal of Bacteriology, 178, 5092–5099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stock, A. M., Robinson, V. L., & Goudreau, P. N. (2000). Two-component signal transduction. Annual Review of Biochemistry, 69, 183–215.

    Article  CAS  PubMed  Google Scholar 

  • Tang, T., Cheng, A., Wang, M., & Li, X. (2013). Reviews in Salmonella typhimurium PhoP/PhoQ two-component regulatory system. Reviews in Medical Microbiology, 24, 18–21.

    Article  Google Scholar 

  • Tang, T., Gao, Q., Barrow, P., Wang, M., Cheng, A., Jia, R., Zhu, D., Chen, S., Liu, M., Sun, K., Yang, Q., & Chen, X. (2015). Development and evaluation of live attenuated Salmonella vaccines in newly hatched duckings. Vaccine, 33, 5564–5571.

    Article  CAS  PubMed  Google Scholar 

  • Tang, T., Gao, Q., Hua, L., Biville, F., & Wang, C. (2017). ClpXP affects the cell metabolism of Salmonella typhimurium partially in an rpos-dependent manner. Metabolomics, 13, 157.

    Article  Google Scholar 

  • Tang, T., Zuo, H., Wang, C., Zeng, P., & Pei, X. (2018). The effect of OmpR-EnvZ on metabolite profile of Salmonella typhimurium: A preliminary investigation. International Journal of Clinical and Experimental Medicine, 11, 8075–8084.

    CAS  Google Scholar 

  • Tian, S., Li, Y., Bao, X., Zhang, Y., & Tang, T. (2021). The impact of SlyA on cell metabolism of Salmonella typhimurium: A joint study of transcriptomics and metabolomics. Journal of Proteome Research, 20, 184–190.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari, S., Jamal, S. B., Hassan, S. S., Carvalho, P., Almeida, S., Barh, D., et al. (2017). Two-component signal transduction systems of pathogenic bacteria as targets for antimicrobial therapy: An overview. Frontiers in Microbiology, 8, 1878.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson, J. A., Liu, M., Helaine, S., & Holden, D. W. (2011). Contribution of the PhoP/Q regulon to survival and replication of Salmonella enterica serovar Typhimurium in macrophages. Microbiology, 157, 2084–2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Velkinburgh, J. C., & Gunn, J. S. (1999). PhoP-PhoQ-regulated loci are required for enhanced bile resistance in Salmonella spp. Infection and Immunity, 67, 1614–1622.

    Article  PubMed  PubMed Central  Google Scholar 

  • Way, J. C., Davis, M. A., Morisato, D., Roberts, D. E., & Kleckner, N. (1984). New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene, 32, 369–379.

    Article  CAS  PubMed  Google Scholar 

  • Zwir, I., Latifi, T., Perez, J. C., Huang, H., & Groisman, E. A. (2012). The promoter architectural landscape of the Salmonella PhoP regulon. Molecular Microbiology, 84, 463–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Shimadzu (China) Co., Ltd. for metabolites detection and identification. This study was supported by grants from the Key Research Programs of Sichuan Science and Technology Department (2021YFS0179) and a normal applied program of Health Commission of Sichuan Province (19PJ231).

Author information

Authors and Affiliations

Authors

Contributions

YL and TT made significant contribution to the experimental design. YL, ST, LS, XZ, SL, YZ, JY, HL and JZ performed the experiments. LY and XB analyzed the raw data of mass spectrometry. YL wrote the manuscript draft. TT, CW and JZ reviewed the manuscript and provided critical comments. TT revised the manuscript. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Chuan Wang or Tian Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1218 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Tian, S., Yang, L. et al. Combined transcriptomic and metabolomic analysis of Salmonella in the presence or absence of PhoP–PhoQ system under low Mg2+ conditions. Metabolomics 18, 93 (2022). https://doi.org/10.1007/s11306-022-01946-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-022-01946-z

Keywords

Navigation