Skip to main content
Log in

Metabolomic characterization of hypertension and dyslipidemia

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Background

Hypertension and dyslipidemia are two main risk factors for cardiovascular diseases (CVD). Moreover, their coexistence predisposes individuals to a considerably increased risk of CVD. However, the regulatory mechanisms involved in hypertension and dyslipidemia as well as their interactions are incompletely understood.

Objectives

The aims of our study were to identify metabolic biomarkers and pathways for hypertension and dyslipidemia, and compare the metabolic patterns between hypertension and dyslipidemia.

Methods

In this study, we performed metabolomic investigations into hypertension and dyslipidemia based on a “healthy” UK population. Metabolomic data from the Husermet project were acquired by gas chromatography–mass spectrometry and ultra-performance liquid chromatography–mass spectrometry. Both univariate and multivariate statistical methods were used to facilitate biomarker selection and pathway analysis.

Results

Serum metabolic signatures between individuals with and without hypertension or dyslipidemia exhibited considerable differences. Using rigorous selection criteria, 26 and 46 metabolites were identified as potential biomarkers of hypertension and dyslipidemia respectively. These metabolites, mainly involved in fatty acid metabolism, glycerophospholipid metabolism, alanine, aspartate and glutamate metabolism, are implicated in insulin resistance, vascular remodeling, macrophage activation and oxidised LDL formation. Remarkably, hypertension and dyslipidemia exhibit both common and distinct metabolic patterns, revealing their independent and synergetic biological implications.

Conclusion

This study identified valuable biomarkers and pathways for hypertension and dyslipidemia, and revealed common and different metabolic patterns between hypertension and dyslipidemia. The information provided in this study could shed new light on the pathologic mechanisms and offer potential intervention targets for hypertension and dyslipidemia as well as their related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

BMI:

Body mass index

CMP:

Cytidine monophosphate

DBP:

Diastolic blood pressure

DG:

Diglyceride

EI:

Electron impact

FDR:

False discovery rate

GGT:

Gamma-glutamyl transpeptidase

GC/MS:

Gas chromatography–mass spectrometry

HDLC:

High density lipoprotein cholesterol

LDH:

Lactate dehydrogenase

LDL:

Low density lipoprotein

LDLC:

Low density lipoprotein cholesterol

LPC:

Lysophosphatidylcholine

MG:

Monoglyceride

MSI:

Metabolomics Standards Initiative

OxLDL:

Oxidised low density lipoprotein

PLS-DA:

Partial least squares discriminant analysis

PC:

Phosphatidylcholine

RBC:

Red blood cell

VIP:

Variable importance in the projection

SBP:

Systolic blood pressure

SM:

Sphingomyelin

TC:

Total cholesterol

TCA:

Tricarboxylic acid

TG:

Triglyceride

TREM2:

Triggering receptor expressed on myeloid cells 2

UPLC/MS:

Ultra-performance liquid chromatography–mass spectrometry

WBC:

White blood cell

References

  • Borghi, C. (2002). Interactions between hypercholesterolemia and hypertension: Implications for therapy. Current Opinion in Nephrology and Hypertension, 11(5), 489–496.

    Article  PubMed  Google Scholar 

  • Brown, M., Wedge, D. C., Goodacre, R., Kell, D. B., Baker, P. N., Kenny, L. C., et al. (2011). Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets. Bioinformatics, 27(8), 1108–1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caillon, A., & Schiffrin, E. L. (2016). Role of inflammation and immunity in hypertension: Recent epidemiological, laboratory, and clinical evidence. Current Hypertension Reports, 18(3), 1–9.

    Article  CAS  Google Scholar 

  • Calder, P. C. (2011). Fatty acids and inflammation: The cutting edge between food and pharma. European Journal of Pharmacology, 668(Suppl. 1), S50–S58.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Miao, H., Feng, Y. L., Zhao, Y. Y., & Lin, R. C. (2014). Metabolomics in dyslipidemia. Advances in Clinical Chemistry, 66, 101–119.

    Article  CAS  PubMed  Google Scholar 

  • Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A. Jr., Izzo, L. I. Jr., et al. (2003). The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: The JNC 7 report. ACC Current Journal Review 12(4), 31–32.

    Article  Google Scholar 

  • Chong, I. G., & Jun, C. H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics & Intelligent Laboratory Systems, 78(1), 103–112.

    Article  CAS  Google Scholar 

  • Cicerchi, C., Li, N., Kratzer, J., Garcia, G., Roncaljimenez, C. A., Tanabe, K., et al. (2014). Uric acid-dependent inhibition of AMP kinase induces hepatic glucose production in diabetes and starvation: Evolutionary implications of the uricase loss in hominids. The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 28(8), 3339–3350.

    Article  CAS  Google Scholar 

  • Dalal, J. J., Padmanabhan, T. N. C., Piyush, J., Shiva, P., Hardik, V., & Ashish, G. (2012). LIPITENSION: Interplay between dyslipidemia and hypertension. Indian Journal of Endocrinology & Metabolism, 16(2), 240.

    Article  CAS  Google Scholar 

  • Demetz, E., Schroll, A., Auer, K., Heim, C., Patsch, J. R., Eller, P., et al. (2014). The arachidonic acid metabolome serves as a conserved regulator of cholesterol metabolism. Cell Metabolism, 20(5), 787–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufouil, C., Richard, F., Fiévet, N., Dartigues, J. F., Ritchie, K., Tzourio, C., et al. (2005). APOE genotype, cholesterol level, lipid-lowering treatment, and dementia: The Three-City Study. Neurology, 64(9), 1531–1538.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francismcintyre, S., Anderson, N., et al. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6(7), 1060–1083.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, W. B., Lin, W., Broadhurst, D., Begley, P., Brown, M., Zelena, E., et al. (2015). Molecular phenotyping of a UK population: Defining the human serum metabolome. Metabolomics, 11(1), 9–26.

    Article  CAS  PubMed  Google Scholar 

  • Eaton, C. B., Feldman, H. A., Assaf, A. R., Mcphillips, J. B., Hume, A. L., Lasater, T. M., et al. (1994). Prevalence of hypertension, dyslipidemia, and dyslipidemic hypertension. Journal of Family Practice, 38(1), 17–23.

    CAS  PubMed  Google Scholar 

  • Egan, B. M., & Stepniakowski, K. T. (1996). Evidence linking fatty fat acids, the risk factor cluster, and vascular pathophysiology. Endocrinology of the Vasculature, 1, 157–172.

    Article  Google Scholar 

  • Erion, D. M., & Shulman, G. I. (2010). Diacylglycerol-mediated insulin resistance. Nature Medicine, 16(4), 400–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteve, E., Ricart, W., & Fernándezreal, J. M. (2005). Dyslipidemia and inflammation: An evolutionary conserved mechanism. Clinical Nutrition, 24(1), 16–31.

    Article  CAS  PubMed  Google Scholar 

  • Fagotcampagna, A., Balkau, B., Simon, D., Warnet, J. M., Claude, J. R., Ducimetlèred, P., et al. (1998). High free fatty acid concentration: An independent risk factor for hypertension in the Paris Prospective Study. International Journal of Epidemiology, 27(5), 808–813.

    Article  CAS  Google Scholar 

  • Garg, A. (1996). Insulin resistance in the pathogenesis of dyslipidemia. Diabetes Care, 19(4), 387–389.

    Article  CAS  PubMed  Google Scholar 

  • Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G. G., & Kell, D. B. (2004). Metabolomics by numbers: Acquiring and understanding global metabolite data. Trends in Biotechnology, 22(5), 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Gromski, P. S., Muhamadali, H., Ellis, D. I., Xu, Y., Correa, E., Turner, M. L., et al. (2015). A tutorial review: Metabolomics and partial least squares-discriminant analysis—A marriage of convenience or a shotgun wedding. Analytica Chimica Acta, 879, 10–23.

    Article  CAS  PubMed  Google Scholar 

  • Gu, J., Jing, L., Ma, X., Zhang, Z., Guo, Q., & Yong, L. (2015). GC-TOF-MS-based serum metabolomic investigations of naked oat bran supplementation in high-fat-diet-induced dyslipidemic rats. The Journal of Nutritional Biochemistry, 26(12), 1509–1519.

    Article  CAS  PubMed  Google Scholar 

  • Halperin, R. O., Sesso, H. D., Ma, J., Buring, J. E., Stampfer, M. J., & Gaziano, J. M. (2006). Dyslipidemia and the risk of incident hypertension in men. Hypertension, 47(1), 45–50.

    Article  CAS  PubMed  Google Scholar 

  • Harris, W. S., Mozaffarian, D., Rimm, E., Krisetherton, P., Rudel, L. L., Appel, L. J., et al. (2009). Omega-6 fatty acids and risk for cardiovascular disease: A science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation, 119(6), 902–907.

    Article  PubMed  Google Scholar 

  • Haug, K., Salek, R. M., Conesa, P., Hastings, J., Matos, P. D., Rijnbeek, M., et al. (2013). MetaboLights—An open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Research, 41(Database Issue), D781–D786.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson, T. A., Ito, M. K., Maki, K. C., Orringer, C. E., Bays, H. E., Jones, P. H., et al. (2015). National lipid association recommendations for patient-centered management of dyslipidemia: Part 1—Full report. Journal of Clinical Lipidology, 9(6), 129–169.

    Article  PubMed  Google Scholar 

  • Kalmijn, S., Foley, D., White, L., Burchfiel, C. M., Curb, J. D., Petrovitch, H., et al. (2000). Metabolic cardiovascular syndrome and risk of dementia in Japanese-American elderly men: The Honolulu-Asia aging study. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(10), 2255–2260.

    Article  CAS  PubMed  Google Scholar 

  • Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmüller, E., et al. (2005). GMD@CSB.DB: The Golm metabolome database. Bioinformatics, 21(8), 1635–1638.

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara, M., Borghi, C., Afg, C., Hisatome, I., Niwa, K., Ohno, M., et al. (2018). Elevated serum uric acid increases risks for developing high LDL cholesterol and hypertriglyceridemia: A five-year cohort study in Japan. International Journal of Cardiology, 261, 183–188.

    Article  PubMed  Google Scholar 

  • Kzhyshkowska, J., Gudima, A., Moganti, K., Gratchev, A., & Orekhov, A. (2016). Perspectives for monocyte/macrophage-based diagnostics of chronic inflammation. Transfusion Medicine & Hemotherapy: Offizielles Organ Der Deutschen Gesellschaft Fur Transfusionsmedizin Und Immunhamatologie, 43(2), 66–77.

    Article  Google Scholar 

  • Lanaspa, M. A., Sanchez-Lozada, L. G., Choi, Y. J., Cicerchi, C., Kanbay, M., Roncal-Jimenez, C. A., et al. (2012). Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: Potential role in fructose-dependent and -independent fatty liver. Journal of Biological Chemistry, 287(48), 40732.

    Article  CAS  PubMed  Google Scholar 

  • Lara-Castro, C., & Garvey, W. T. (2008). Intracellular lipid accumulation in liver and muscle and the insulin resistance syndrome. Endocrinology and Metabolism Clinics of North America, 37(4), 841–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Weber, K. J., & Schilling, J. D. (2016). Glutamine modulates macrophage lipotoxicity. Nutrients, 8(4), 215.

    Article  CAS  Google Scholar 

  • Lim, S., Vos, T., & Bruce, N. (2012). The burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions 1990–2010: A systematic analysis. The Lancet, 380(9859), 2224–2260.

    Article  Google Scholar 

  • Liu, H. H., & Li, J. J. (2015). Aging and dyslipidemia: A review of potential mechanisms. Ageing Research Reviews, 19(4), 43–52.

    Article  CAS  PubMed  Google Scholar 

  • Loo, R. L., Zou, X., Appel, L. J., Nicholson, J. K., & Holmes, E. (2018). Characterization of metabolic responses to healthy diets and association with blood pressure: Application to the Optimal Macronutrient Intake Trial for Heart Health (OmniHeart), a randomized controlled study. The American Journal of Clinical Nutrition, 107(3), 323–334.

    Article  PubMed  Google Scholar 

  • Matsumoto, T., Kobayashi, T., & Kamata, K. (2007). Role of lysophosphatidylcholine (LPC) in atherosclerosis. Current Medicinal Chemistry, 14(30), 3209–3220.

    Article  CAS  PubMed  Google Scholar 

  • Matsutomo, T., Ushijima, M., Kodera, Y., Nakamoto, M., Takashima, M., Morihara, N., et al. (2017). Metabolomic study on the antihypertensive effect of S-1-propenylcysteine in spontaneously hypertensive rats using liquid chromatography coupled with quadrupole-Orbitrap mass spectrometry. Journal of Chromatography B, 1046, 147–155.

    Article  CAS  Google Scholar 

  • Menni, C., Graham, D., Kastenmüller, G., Alharbi, N. H., Alsanosi, S. M., Mcbride, M., et al. (2015). Metabolomic identification of a novel pathway of blood pressure regulation involving hexadecanedioate. Hypertension, 66(2), 422–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa, T., Hu, H., Zharikov, S., Tuttle, K. R., Short, R. A., Glushakova, O., et al. (2006). A causal role for uric acid in fructose-induced metabolic syndrome. American Journal of Physiology Renal Physiology, 290(3), F625.

    Article  CAS  PubMed  Google Scholar 

  • Nikolic, S. B., Sharman, J. E., Adams, M. J., & Edwards, L. M. (2014). Metabolomics in hypertension. Journal of Hypertension, 32(6), 1159–1169.

    Article  CAS  PubMed  Google Scholar 

  • Ordway, R. W., Singer, J. J., & Walsh, J. V. Jr. (1991). Direct regulation of ion channels by fatty acids. Trends in Neurosciences, 14(3), 96–100.

    Article  CAS  PubMed  Google Scholar 

  • Pirillo, A., Norata, G. D., & Catapano, A. L. (2013). LOX-1, OxLDL, and atherosclerosis. Mediators of Inflammation, 2013(5), 152786.

    PubMed  PubMed Central  Google Scholar 

  • Rutkowsky, J. M., Knotts, T. A., Ono-Moore, K. D., Mccoin, C. S., Huang, S., Schneider, D., et al. (2014). Acylcarnitines activate proinflammatory signaling pathways. American Journal of Physiology-Endocrinology and Metabolism, 306(12), E1378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvetti, A., Brogi, G., Legge, V. D., & Bernini, G. P. (1993). The inter-relationship between insulin resistance and hypertension. Drugs, 46(2), 149–159.

    Article  PubMed  Google Scholar 

  • Stamler, J., Wentworth, D., & Neaton, J. D. (1986). Prevalence and prognostic significance of hypercholesterolemia in men with hypertension: Prospective data on the primary screenees of the Multiple Risk Factor Intervention Trial. The American Journal of Medicine, 80(2), 33–39.

    Article  CAS  PubMed  Google Scholar 

  • Strimmer, K. (2008). fdrtool: A versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics, 24(12), 1461–1462.

    Article  CAS  PubMed  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3(3), 211–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, G. Y., Shelat, P. B., Jensen, M. B., Yan, H., Sun, A. Y., & Simonyi, A. (2010). Phospholipases A2 and inflammatory responses in the central nervous system. Neuromolecular Medicine, 12(2), 133–148.

    Article  CAS  PubMed  Google Scholar 

  • Toshiaki, O., Hirotaka, T., Yasuhiro, N., Eitaro, K., Yoshiyuki, S., Katsuhito, K., et al. (2016). Dyslipidemia and the risk of developing hypertension in a working-age male population. Journal of the American Heart Association Cardiovascular & Cerebrovascular Disease, 5(3), e003053.

    Google Scholar 

  • Trygg, J., Holmes, E., & Lundstedt, T. (2007). Chemometrics in metabonomics. Journal of Proteome Research, 6(2), 469–479.

    Article  CAS  PubMed  Google Scholar 

  • Turnbull, I. R., Gilfillan, S., Cella, M., Aoshi, T., Miller, M., Piccio, L., et al. (2006). Cutting edge: TREM-2 attenuates macrophage activation. Journal of Immunology, 177(6), 3520–3524.

    Article  CAS  Google Scholar 

  • van den Berg, R. A, Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., & van den Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7(1), 142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Cella, M., Mallinson, K., Ulrich, J. D., Young, K. L., Robinette, M. L., et al. (2015). TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell, 160(6), 1061–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber, M. A., Schiffrin, E. L., White, W. B., Mann, S., Lindholm, L. H., Kenerson, J. G., et al. (2014). Clinical practice guidelines for the management of hypertension in the community. The Journal of Clinical Hypertension, 16(1), 14–26.

    Article  PubMed  Google Scholar 

  • Westerhuis, J. A., Hoefsloot, H. C. J., Smit, S., Vis, D. J., Smilde, A. K., van Velzen, E. J. J., et al. (2008). Assessment of PLSDA cross validation. Metabolomics, 4(1), 81–89.

    Article  CAS  Google Scholar 

  • Wishart, D. S. (2016). Emerging applications of metabolomics in drug discovery and precision medicine. Nature Reviews Drug Discovery, 15(7), 473–484.

    Article  CAS  PubMed  Google Scholar 

  • Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., et al. (2013). HMDB 3.0—The human metabolome database in 2013. Nucleic Acids Research, 41(Database Issue), D801–D807.

    CAS  PubMed  Google Scholar 

  • World Health Organization. (2002). Chapter 4. Quantifying selected major risks to health. In The world health report 2002: Reducing risks, promoting healthy life. Geneva: World Health Organization.

    Google Scholar 

  • Worley, B., & Powers, R. (2012). Multivariate analysis in metabolomics. Current Metabolomics, 1(1), 92–107.

    Google Scholar 

  • Wu, R., Huang, Y. H., Elinder, L. S., & Frostegard, J. (1998). Lysophosphatidylcholine is involved in the antigenicity of oxidized LDL. Arteriosclerosis, Thrombosis, and Vascular Biology, 18(4), 626–630.

    Article  CAS  PubMed  Google Scholar 

  • Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0—Making metabolomics more meaningful. Nucleic Acids Research, 43(W1), W251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, M. S., Wang, A., & Yu, H. (2014). Link between insulin resistance and hypertension: What is the evidence from evolutionary biology? Diabetology & Metabolic Syndrome, 6(1), 1–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We especially thank the team from the Husermet project for gathering and sharing all the data. In addition, this work was funded by National Natural Science Foundation of China (project number 81703316) and Natural Science Foundation of Jiangsu Province (project number BK20170350).

Author information

Authors and Affiliations

Authors

Contributions

CK and YS conceived and designed the research; XZ and YS wrote the manuscript; CK and YZ performed the data analysis. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yueping Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 301 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, C., Zhu, X., Zhang, Y. et al. Metabolomic characterization of hypertension and dyslipidemia. Metabolomics 14, 117 (2018). https://doi.org/10.1007/s11306-018-1408-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-018-1408-y

Keywords

Navigation