Skip to main content
Log in

Metabolic changes of genetically engineered grapes (Vitis vinifera L.) studied by 1H-NMR, metabolite heatmaps and iPLS

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The Deficiens Homologue 9-iaaM (DefH9-iaaM) gene is an ovule-specific auxin-synthesizing gene which is expressed specifically in placenta/ovules and promotes auxin-synthesis. It was introduced into the genome of two grape cultivars Thompson Seedless and Silcora and both transgenic cultivars had an increased number of berries per bunch.

Objectives

This study investigates the down-stream metabolic changes of Silcora and Thompson seedless grape cultivars when genetically modified through the insertion of the DefH9-iaaM gene into their genome.

Methods

The effects of the genetic modification upon the grape metabolome were evaluated through 1H-NMR and exploratory data analysis. Chemometric tools such as Interval Partial Least Squares regression and metabolite heatmaps were employed for scrutinizing the changes in the transgenic metabolome as compared to the wild type one.

Results

The results show that the pleiotropic effect on the grape metabolome as a function of the gene modifications is relatively low, although the insertion of the transgene caused a decrement in malic acid and proline and an increment in p-coumaric acid content. In addition, the concentration of malic acid was successfully correlated with the number of inserted copies of transgene in the Silcora cultivar, proving that the increased production of berries, promoted by the inserted gene, is achieved at the expense of a decrement in malic acid concentration.

Conclusion

NMR together with chemometrics is able to identify specific metabolites that were up- or down regulated in the genetically engineered plants allowing highlighting alterations in the down-stream metabolic pathways due to the up-stream genetic modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamski, J., & Suhre, K. (2013). Metabolomics platforms for genome wide association studies—linking the genome to the metabolome. Current Opinion in Biotechnology, 24(1), 39–47. doi:10.1016/j.copbio.2012.10.003.

    Article  CAS  PubMed  Google Scholar 

  • Ali, K., Maltese, F., Choi, Y. H., & Verpoorte, R. (2010). Metabolic constituents of grapevine and grape-derived products. Phytochemistry Reviews, 9(3), 357–378. doi:10.1007/s11101-009-9158-0.

    Article  CAS  PubMed  Google Scholar 

  • Ali, K., Maltese, F., Fortes, A. M., Pais, M. S., Choi, Y. H., & Verpoorte, R. (2011). Monitoring biochemical changes during grape berry development in Portuguese cultivars by NMR spectroscopy. Food Chemistry, 124(4), 1760–1769. doi:10.1016/j.foodchem.2010.08.015.

    Article  CAS  Google Scholar 

  • Anastasiadi, M., Zira, A., Magiatis, P., Haroutounian, S. A., Skaltsounis, A. L., & Mikros, E. (2009). 1H NMR-Based metabonomics for the classification of greek wines according to variety, region, and vintage. Comparison with HPLC Data. Journal of Agricultural and Food Chemistry, 57(23), 11067–11074. doi:10.1021/jf902137e.

    Article  CAS  PubMed  Google Scholar 

  • Balmer, D., Flors, V., Glauser, G., & Mauch-Mani, B. (2014). Metabolomics of cereals under biotic stress: current knowledge and techniques. Induced plant responses to microbes and insects, 146, doi:10.3389/fpls.2013.00082.

  • Cheynier, V., Duenas-Paton, M., Salas, E., Maury, C., Souquet, J.-M., Sarni-Manchado, P., et al. (2006). Structure and properties of wine pigments and tannins. American Journal of Enology and Viticulture, 57(3), 298–305.

    CAS  Google Scholar 

  • Conde, C., Silva, P., Fontes, N., Dias, A. C. P., Tavares, R. M., Sousa, M. J., et al. (2007). Biochemical changes throughout grape berry development and fruit and wine quality. Food, 1, 1–22.

    Google Scholar 

  • Costantini, E., Landi, L., Silvestroni, O., Pandolfini, T., Spena, A., & Mezzetti, B. (2007). Auxin synthesis-encoding transgene enhances grape fecundity. Plant Physiology, 143(4), 1689–1694. doi:10.1104/pp.106.095232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig, A., Cloarec, O., Holmes, E., Nicholson, J. K., & Lindon, J. C. (2006). Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Analytical Chemistry, 78(7), 2262–2267. doi:10.1021/ac0519312.

    Article  CAS  PubMed  Google Scholar 

  • Dai, Z. W., Léon, C., Feil, R., Lunn, J. E., Delrot, S., & Gomès, E. (2013). Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit. Journal of Experimental Botany, 64(5), 1345–1355. doi:10.1093/jxb/ers396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, C., & Robinson, S. (1996). Sugar accumulation in grape berries. Plant Physiology, 111, 275–283. doi:10.1104/pp.111.1.275.

    Article  Google Scholar 

  • EFSA. (2006). Guidance document of the Scientific Panel on Genetically Modified Organisms for the risk assessment of genetically modified plants and derived food and feed. EFSA Journal, 99, 1–100.

    Google Scholar 

  • Fernández de Simón, B., Hernández, T., Estrella, I., & Gómez-Cordovés, C. (1992). Variation in phenol content in grapes during ripening: low-molecular-weight phenols. European Food Research and Technology, 194(4), 351–354.

    Google Scholar 

  • Gallo, V., Mastrorilli, P., Cafagna, I., Nitti, G. I., Latronico, M., Longobardi, F., et al. (2014). Effects of agronomical practices on chemical composition of table grapes evaluated by NMR spectroscopy. Journal of Food Composition and Analysis, 35(1), 44–52. doi:10.1016/j.jfca.2014.04.004.

    Article  CAS  Google Scholar 

  • Garrido, J., & Borges, F. (2013). Wine and grape polyphenols—a chemical perspective. Food Research International, 54(2), 1844–1858. doi:10.1016/j.foodres.2013.08.002.

    Article  Google Scholar 

  • Gerós, H., Chaves, M., & Delrot, S. (2012). The biochemistry of the grape berry. Bentham Science Publishers.

  • Griffin, J. L. (2006). The Cinderella story of metabolic profiling: does metabolomics get to go to the functional genomics ball? Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1465), 147–161. doi:10.1098/rstb.2005.1734.

    Article  Google Scholar 

  • Hale, C. R. (1962). Synthesis of organic acids in the fruit of the grape. Nature, 195(4844), 917–918. doi:10.1038/195917a0.

    Article  CAS  Google Scholar 

  • Hall, R., Beale, M., Fiehn, O., Hardy, N., Sumner, L., & Bino, R. (2002). Plant metabolomics the missing link in functional genomics strategies. The Plant Cell, 14(7), 1437–1440. doi:10.1105/tpc.140720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(7), 417–441. doi:10.1037/h0071325.

    Article  Google Scholar 

  • Inouye, M., Kettunen, J., Soininen, P., Silander, K., Ripatti, S., Kumpula, L. S., et al. (2010). Metabonomic, transcriptomic, and genomic variation of a population cohort. Molecular System Biology, 6(1), 1–10. doi:10.1038/msb.2010.93.

    Google Scholar 

  • James, A. K., Gordon, J. T., John, R. P., Donald, R. H., David, H., Charles, R. H., et al. (2000). Development of seed polyphenols in berries from Vitis vinifera L. cv. Shiraz. Australian Journal of Grape and Wine Research, 6(3), 244–254. doi:10.1111/j.1755-0238.2000.tb00185.x.

    Article  Google Scholar 

  • Kliewer, W. M. (1966). Sugars and organic acids of Vitis vinifera. Plant Physiology, 41(6), 923–931. doi:10.1104/pp.41.6.923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laghi, L., Versari, A., Marcolini, E., & Parpinello, G. P. (2014). Metabonomic investigation by 1H-NMR to discriminate between red wines from organic and biodynamic grapes. Food and Nutrition Sciences, 5, 52–59. doi:10.4236/fns.2014.51007.

    Article  CAS  Google Scholar 

  • López-Rituerto, E., Savorani, F., Avenoza, A., Busto, J. H., Peregrina, J. M., & Engelsen, S. B. (2012). Investigations of La Rioja terroir for wine production using 1H NMR metabolomics. Journal of Agicultural and Food Chemistry, 60(13), 3452–3461. doi:10.1021/jf204361d.

    Article  Google Scholar 

  • Mezzetti, B., Pandolfini, T., Navacchi, O., & Landi, L. (2002). Genetic transformation of Vitis vinifera via organogenesis. BMC Biotechnology, 2(18), 1–10. doi:10.1186/1472-6750-2-18.

    Google Scholar 

  • Mohanta, T. K. (2013). Plant metabolomics: missing link in next generation functional genomics era. Journal of Applied Biology and Biotechnology, 1, 001–010. doi:10.7324/JABB.2013.1301.

    Google Scholar 

  • Mulas, G., Galaffu, M. G., Pretti, L., Nieddu, G., Mercenaro, L., Tonelli, R., et al. (2011). NMR analysis of seven selections of vermentino grape berry: metabolites composition and development. Journal of Agricultural and Food Chemistry, 59(3), 793–802. doi:10.1021/jf103285f.

    Article  CAS  PubMed  Google Scholar 

  • Nørgaard, L., Saudland, A., Wagner, J., Nielsen, J. P., Munck, L., & Engelsen, S. B. (2000). Interval Partial Least-Squares Regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy. Applied Spectroscopy, 54(3), 413–419.

    Article  Google Scholar 

  • Oliveira, J., de Freitas, V., Silva, A. M. S., & Mateus, N. (2007). Reaction between hydroxycinnamic acids and anthocyanin—pyruvic acid adducts yielding new portisins. Journal of Agricultural and Food Chemistry, 55(15), 6349–6356. doi:10.1021/jf070968f.

    Article  CAS  PubMed  Google Scholar 

  • Pereira, G. E., Gaudillere, J.-P., Leeuwen, C. V., Hilbert, G., Maucourt, M., Deborde, C., et al. (2006). 1H NMR metabolite fingerprints of grape berry: comparison of vintage and soil effects in Bordeaux grapevine growing areas. Analytica Chimica Acta, 563(1–2), 346–352. doi:10.1016/j.aca.2005.11.007.

    Article  CAS  Google Scholar 

  • Picone, G., Laghi, L., Gardini, F., Lanciotti, R., Siroli, L., & Capozzi, F. (2013). Evaluation of the effect of carvacrol on the Escherichia coli 555 metabolome by using 1 H-NMR spectroscopy. Food Chemistry, 141(4), 4367–4374. doi:10.1016/j.foodchem.2013.07.004.

    Article  CAS  PubMed  Google Scholar 

  • Picone, G., Mezzetti, B., Babini, E., Capocasa, F., Placucci, G., & Capozzi, F. (2011). Unsupervised principal component analysis of NMR metabolic profiles for the assessment of substantial equivalence of transgenic grapes (Vitis vinifera). Journal of Agricultural and Food Chemistry, 59(17), 9271–9279. doi:10.1021/jf2020717.

    Article  CAS  PubMed  Google Scholar 

  • Romeyer, F. M., Macheix, J. J., Goiffon, J. J., Reminiac, C. C., & Sapis, J. C. (2002). Browning capacity of grapes. 3. Changes and importance of hydroxycinnamic acid-tartaric acid esters during development and maturation of the fruit. Journal of Agricultural and Food Chemistry, 31(2), 346–349. doi:10.1021/jf00116a040.

    Article  Google Scholar 

  • Rotino, G. L., Perri, E., Zottini, M., Sommer, H., & Spena, A. (1997). Genetic engineering of parhenocarpic plants. Nature Biotechnology, 15, 1320–1398. doi:10.1038/nbt1297-1398.

    Article  Google Scholar 

  • Saito, K., & Kasai, Z. (1968). Accumulation of tartaric acid in the ripening process of grapes. Plant Cell Physiology, 9(3), 529–537.

    CAS  Google Scholar 

  • Savage, A. K., Tucker, G., van Duynhoven, J. P. M., Wulfert, F., & Daykin, C. A. (2009). Nutrimetabolomics: development of a bio-identification toolbox to determine the bioactive compounds in grape juice. Bioanalysis, 1(9), 1537–1549. doi:10.4155/bio.09.147.

    Article  CAS  PubMed  Google Scholar 

  • Savorani, F., Picone, G., Badiani, A., Fagioli, P., Capozzi, F., & Engelsen, S. B. (2010a). Metabolic profiling and aquaculture differentiation of gilthead sea bream by 1H NMR metabonomics. Food Chemistry, 120(3), 907–914. doi:10.1016/j.foodchem.2009.10.071.

    Article  CAS  Google Scholar 

  • Savorani, F., Tomasi, G., & Engelsen, S. B. (2010b). iCOSHIFT: A versatile tool for the rapid alignment of 1D NMR spectra. Journal of Magnetic Resonance, 202(2), 190–202. doi:10.1016/j.jmr.2009.11.012.

    Article  CAS  PubMed  Google Scholar 

  • Schlosser, J., Olsson, N., Weis, M., Reid, K., Peng, F., Lund, S., et al. (2008). Cellular expansion and gene expression in the developing grape (Vitis vinifera L.). Protoplasma, 232(3), 255–265. doi:10.1007/s00709-008-0280-9.

    Article  CAS  PubMed  Google Scholar 

  • Scorza, R., Cordts, J., Gray, D., Gonsalves, D., Emershad, R., & Ramming, D. (1996). Producing transgenicthompson seedless’ grape (Vitis vinifera L.) plants. Journal of the American Society for Horticultural Science, 121(4), 616–619.

    Google Scholar 

  • Simó, C., Ibáez, C., Valdés, A., Cifuentes, A., & García-Cañas, V. (2014). Metabolomics of genetically modified crops. International Journal of Molecular Sciences, 15(10), 18941–18966. doi:10.3390/ijms151018941.

    Article  PubMed  PubMed Central  Google Scholar 

  • Son, H.-S., Hwang, G.-S., Kim, K. M., Ahn, H.-J., Park, W.-M., Van Den Berg, F., et al. (2009). Metabolomic studies on geographical grapes and their wines using 1H NMR analysis coupled with multivariate statistics. Journal of Agricultural and Food Chemistry, 57(4), 1481–1490. doi:10.1021/jf803388w.

    Article  CAS  PubMed  Google Scholar 

  • Stines, A. P., Grubb, J., Gockowiak, H., Henschke, P. A., Høj, P. B., & Heeswijck, R. (2000). Proline and arginine accumulation in developing berries of Vitis vinifera L. in Australian vineyards: influence of vine cultivar, berry maturity and tissue type. Australian Journal of Grape and Wine Research, 6(2), 150–158. doi:10.1111/j.1755-0238.2000.tb00174.x.

    Article  CAS  Google Scholar 

  • Zhao, Y. (2010). auxin biosynthesis and its role in plant development. Annual Review of Plant Biology, 61, 49–64. doi:10.1146/annurev-arplant-042809-112308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y. (2014). Auxin biosynthesis. The Arabidopsis Book/American Society of Plant Biologists, 12, e0173. doi:10.1199/tab.0173.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The Danish Ministry of Food, Agriculture and Fisheries is acknowledged for sponsoring the project “Urinary biomarkers for eating patterns using NMR spectroscopy and Chemometrics” (3304-FVFP-060706-01) and the SBE would like to thank the Faculty of Science for generous support to the NMR nutri-metabolomics platform. The European Union is acknowledged for the support under the FP7 programme to the CHANCE project (KBBE-4-266331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Savorani.

Ethics declarations

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent was required for this study since no human participant was involved.

Conflict of interest

Picone G., Savorani F., Trimigno A., Mezzetti B., Capozzi F. and Engelsen S.B. declare that they have no conflict of interest.

Additional information

G. Picone and F. Savorani contributed equally to the research.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picone, G., Savorani, F., Trimigno, A. et al. Metabolic changes of genetically engineered grapes (Vitis vinifera L.) studied by 1H-NMR, metabolite heatmaps and iPLS. Metabolomics 12, 150 (2016). https://doi.org/10.1007/s11306-016-1095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1095-5

Keywords

Navigation