Skip to main content

Advertisement

Log in

Analysis of human urine reveals metabolic changes related to the development of acute kidney injury following cardiac surgery

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Acute kidney injury (AKI) is a frequent complication of sepsis, major surgery or nephrotoxic medication use. It is associated with high morbidity and mortality. In an effort to identify novel biomarkers capable of predicting the development of AKI after cardiac surgery with cardiopulmonary bypass use, urine specimens were collected before and at 4 and 24 h after surgery from 106 patients and analyzed by means of nuclear magnetic resonance spectroscopy. Postoperative AKI of stage 1–3 as defined by the Acute Kidney Injury Network (AKIN) developed in 34 cases. Employing Quantile Normalization and support vector machine based classification, spectra of the 24-hour postoperative urine specimens were found to predict AKI across all stages with an average accuracy of 76.0 % and a corresponding area under the receiver operating characteristic curve of 0.83. Considering only AKIN-stage 2 and 3 patients, prediction accuracy increased to 81.7 % and 100 %, respectively. Among the small set of predictive biomarkers identified was carnitine, the urinary concentration of which was elevated significantly in AKI-free patients only, and tranexamic acid, which is routinely applied as an antifibrinolytic agent at the end of surgery, and whose renal excretion was delayed in AKI patients. The study underscores the power of NMR and bioinformatics in identifying novel biomarkers of disease and in gaining new insights into pathomechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Shabanah, O. A., Aleisa, A. M., Al-Yahya, A. A., et al. (2010). Increased urinary losses of carnitine and decreased intramitochondrial coenzyme A in gentamicin-induced acute renal failure in rats. Nephrology, Dialysis, Transplantation, 25, 69–76.

    Article  PubMed  CAS  Google Scholar 

  • Arduini, A., Bonomini, M., Savica, V., Amato, A., & Zammit, V. (2008). Carnitine in metabolic disease: Potential for pharmacological intervention. Pharmacology & Therapeutics, 120, 149–156.

    Article  CAS  Google Scholar 

  • Bellomo, R., Ronco, C., Kellum, J. A., Mehta, R. L., Palevsky, P., & ADQI Workgroup. (2004). Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: The second international consensus conference of the acute dialysis quality initiative (ADQI) group. Critical Care, 8(4), R204–R212.

    Article  PubMed  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B, 57, 289–300.

    Google Scholar 

  • Bolstad, B. M., Irizarry, R. A., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19, 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Braga-Neto, U. M., & Dougherty, E. R. (2004). Is cross-validation valid for small-sample microarray classification? Bioinformatics, 20, 374–380.

    Article  PubMed  CAS  Google Scholar 

  • Ciba-Geigy. (1983). Wissenschaftliche Tabellen Geigy. Basel: Ciba-Geigy.

    Google Scholar 

  • Devchand, P. R., Keller, H., Peters, J. M., Vazquez, M., Gonzalez, F. J., & Wahli, W. (1996). The PPAR alpha-leukotriene B4 pathway to inflammation control. Nature, 384, 39–43.

    Article  PubMed  CAS  Google Scholar 

  • Diao, L., Ekins, S., & Polli, J. E. (2010). Quantitative structure activity relationship for inhibition of human organic cation/carnitine transporter. Molecular Pharmaceutics, 7, 2120–2131.

    Article  PubMed  CAS  Google Scholar 

  • Dzúrik, R., Spustová, V., Krivosíková, Z., & Gazdíková, K. (2001). Hippurate participates in the correction of metabolic acidosis. Kidney International Supplement, 78, S278–S281.

    Article  PubMed  Google Scholar 

  • Endre, Z. H., Pickering, J. W., Walker, R. J., et al. (2011). Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function. Kidney International, 79, 1119–1130.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson, O., Kjellman, H., Pilbrant, A., & Schannong, M. (1974). Pharmacokinetics of tranexamic acid after intravenous administration to normal volunteers. European Journal of Clinical Pharmacology, 7, 375–380.

    Article  PubMed  CAS  Google Scholar 

  • Fukui, Y., Kato, M., Inoue, Y., Matsubara, A., & Itoh, K. (2009). A metabonomic approach identifies human urinary phenylacetylglutamine as a novel marker of interstitial cystitis. Journal of Chromatography B, 877, 3806–3812.

    Article  CAS  Google Scholar 

  • Ganapathy, M. E., Huang, W., Rajan, D. P., et al. (2000). Beta-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter. Journal of Biological Chemistry, 275, 1699–1707.

    Article  PubMed  CAS  Google Scholar 

  • Geng, W., & Pang, K. S. (1999). Differences in excretion of hippurate, as a metabolite of benzoate and as an administered species, in the single-pass isolated perfused rat kidney explained. Journal of Pharmacology and Experimental Therapeutics, 288, 597–606.

    PubMed  CAS  Google Scholar 

  • Gronwald, W., Klein, M. S., Kaspar, H., et al. (2008). Urinary metabolite quantification employing 2D NMR spectroscopy. Analytical Chemistry, 80, 9288–9297.

    Article  PubMed  CAS  Google Scholar 

  • Gronwald, W., Klein, M. S., Zeltner, R., et al. (2011). Detection of autosomal dominant polycystic kidney disease by NMR spectroscopic fingerprinting of urine. Kidney International, 79, 1244–1253.

    Article  PubMed  CAS  Google Scholar 

  • Haase-Fielitz, A., Mertens, P. R., Plass, M., et al. (2011). Urine hepcidin has additive value in ruling out cardiopulmonarybypass-associated acute kidney injury: An observational cohort study. Critical Care, 15, R186.

    Article  PubMed  Google Scholar 

  • Han, W. K., Bailly, V., Abichandani, R., Thadhani, R., & Bonventre, J. V. (2002). Kidney injury molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney International, 62, 237–244.

    Article  PubMed  CAS  Google Scholar 

  • Han, W. K., Wagener, G., Zhu, Y., Wang, S., & Lee, H. T. (2009). Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clinical Journal of the American Society of Nephrology, 4, 873–882.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, P. W., & Everett, D. J. (2004). Significance of the detection of esters of P-hydroxybenzoic acid (parabens) in human breast tumours. Journal of Applied Toxicology, 24, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Idrovo, J.-P., Yang, W.-L., Matsuda, A., Nicastro, J., Coppa, G. F., & Wang, P. (2012). Post-treatment with the combination of 5-aminoimidazole-4-carboxyamide ribonucleoside and carnitine improves renal function after ischemia/reperfusion injury. Shock, 37, 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, Y., Ezawa, A., Kikuchi, K., Tsuruta, Y., & Niwa, T. (2012). Protein-bound uremic toxins in hemodialysis patients measured by liquid chromatography/tandem mass spectrometry and their effects on endothelial ROS production. Analytical and Bioanalytical Chemistry, 403, 1841–1850.

    Article  PubMed  CAS  Google Scholar 

  • James, M. O., Smith, R. L., Williams, R. T., & Reidenberg, M. (1972). The conjugation of phenylacetic acid in man, sub-human primates and some non-primate species. Proceedings of the Royal Society of London B: Biological Sciences, 182, 25–35.

    Article  CAS  Google Scholar 

  • Kang, S.-M., Park, J.-C., Shin, M.-J., et al. (2011). ¹H nuclear magnetic resonance based metabolic urinary profiling of patients with ischemic heart failure. Clinical Biochemistry, 44, 293–299.

    Article  PubMed  Google Scholar 

  • KDIGO Workgroup. (2012). Section 2: AKI definition. Kidney International Supplement, 2, 19–36.

    Article  Google Scholar 

  • Klein, M. S., Almstetter, M. F., Schlamberger, G., et al. (2010). Nuclear magnetic resonance and mass spectrometry-based milk metabolomics in dairy cows during early and late lactation. Journal of Dairy Science, 93, 1539–1550.

    Article  PubMed  CAS  Google Scholar 

  • Kohl, S. M., Klein, M. S., Hochrein, J., Oefner, P. J., Spang, R., & Gronwald, W. (2012). State-of-the art data normalization methods improve NMR-based metabolomic analysis. Metabolomics, 8, 146–160.

    Article  PubMed  CAS  Google Scholar 

  • Kostka, D., & Spang, R. (2008). Microarray based diagnosis profits from better documentation of gene expression signatures. PLoS Computational Biology, 4, e22.

    Article  PubMed  Google Scholar 

  • Lameire, N. H., Vanholder, R. C., & Biesen, W. A. V. (2011). How to use biomarkers efficiently in acute kidney injury. Kidney International, 79, 1047–1050.

    Article  PubMed  Google Scholar 

  • Lango, R., Smolenski, R. T., Rogowski, J., et al. (2005). Propionyl-l-carnitine improves hemodynamics and metabolic markers of cardiac perfusion during coronary surgery in diabetic patients. Cardiovascular Drugs and Therapy, 19, 267–275.

    Article  PubMed  CAS  Google Scholar 

  • Lemberger, T., Desvergne, B., & Wahli, W. (1996). Peroxisome proliferator-activated receptors: A nuclear receptor signaling pathway in lipid physiology. Annual Review of Cell and Developmental Biology, 12, 335–363.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Yan, S., Ji, C., et al. (2012). Metabolomic changes and protective effect of (l)-carnitine in rat kidney ischemia/reperfusion injury. Kidney and Blood Pressure Research, 35, 373–381.

    Article  PubMed  CAS  Google Scholar 

  • Lohninger, A., Pittner, G., & Pittner, F. (2005). l-Carnitine: New aspects of a known compound-a brief survey. Monatshefte Chemie, 136, 1255–1268.

    Article  CAS  Google Scholar 

  • Mariscalco, G., Lorusso, R., Dominici, C., Renzulli, A., & Sala, A. (2011). Acute kidney injury: A relevant complication after cardiac surgery. Annals of Thoracic Surgery, 92, 1539–1547.

    Article  PubMed  Google Scholar 

  • Mehta, R. L., Kellum, J. A., Shah, S. V., et al. (2007). Acute kidney injury network: Report of an initiative to improve outcomes in acute kidney injury. Critical Care, 11, R31.

    Article  PubMed  Google Scholar 

  • Mukherjee, S., Golland, P., & Panchenko, P. (2003). Permutation tests for classification. Cambridge: Massachusetts Institute of Technology.

    Google Scholar 

  • Noiri, E., Yokomizo, T., Nakao, A., et al. (2000). An in vivo approach showing the chemotactic activity of leukotriene B(4) in acute renal ischemic-reperfusion injury. Proceedings of the National Academy of Sciences USA, 97, 823–828.

    Article  CAS  Google Scholar 

  • Parikh, C. R., Abraham, E., Ancukiewicz, M., & Edelstein, C. L. (2005). Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. Journal of the American Society of Nephrology, 16, 3046–3052.

    Article  PubMed  CAS  Google Scholar 

  • Portilla, D., Dai, G., Peters, J. M., Gonzalez, F. J., Crew, M. D., & Proia, A. D. (2000). Etomoxir-induced PPARalpha-modulated enzymes protect during acute renal failure. American Journal of Physiology: Renal Physiology, 278, F667–F675.

    PubMed  CAS  Google Scholar 

  • Psychogios, N., Hau, D. D., Peng, J., et al. (2011). The human serum metabolome. PLoS One, 6, e16957.

    Article  PubMed  CAS  Google Scholar 

  • Rosner, M. H., & Okusa, M. D. (2006). Acute kidney injury associated with cardiac surgery. Clinical Journal of the American Society of Nephrology, 1, 19–32.

    Article  PubMed  Google Scholar 

  • Selma, M. V., Espín, J. C., & Tomás-Barberán, F. A. (2009). Interaction between phenolics and gut microbiota: Role in human health. Journal of Agricultural and Food Chemistry, 57, 6485–6501.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, A., Swaminathan, M., & Stafford-Smith, M. (2008). Cardiac surgery-associated acute kidney injury: Putting together the pieces of the puzzle. Nephron Physiology, 109, 55–60.

    Article  Google Scholar 

  • Sing, T., Sander, O., Beerenwinkel, N., & Lengauer, T. (2005). ROCR: Visualizing classifier performance in R. Bioinformatics, 21, 3940–3941.

    Article  PubMed  CAS  Google Scholar 

  • Star, R. A. (1998). Treatment of acute renal failure. Kidney International, 54, 1817–1831.

    Article  PubMed  CAS  Google Scholar 

  • van de Poll, M. C. G., Soeters, P. B., Deutz, N. E. P., Fearon, K. C. H., & Dejong, C. H. C. (2004). Renal metabolism of amino acids: Its role in interorgan amino acid exchange. American Journal of Clinical Nutrition, 79, 185–197.

    PubMed  Google Scholar 

  • van Vlies, N., Ferdinandusse, S., Turkenburg, M., Wanders, R. J. A., & Vaz, F. M. (2007). PPAR alpha-activation results in enhanced carnitine biosynthesis and OCTN2-mediated hepatic carnitine accumulation. Biochimica et Biophysica Acta, 1767, 1134–1142.

    Article  PubMed  Google Scholar 

  • Varma, S., & Simon, R. (2006). Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics, 7, 91.

    Article  PubMed  Google Scholar 

  • Vaz, F. M., & Wanders, R. J. A. (2002). Carnitine biosynthesis in mammals. Biochemical Journal, 361, 417–429.

    Article  PubMed  CAS  Google Scholar 

  • Waikar, S. S., Sabbisetti, V. S., & Bonventre, J. V. (2010). Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate. Kidney International, 78, 486–494.

    Article  PubMed  CAS  Google Scholar 

  • Westhuyzen, J., Endre, Z. H., Reece, G., Reith, D. M., Saltissi, D., & Morgan, T. J. (2003). Measurement of tubular enzymuria facilitates early detection of acute renal impairment in the intensive care unit. Nephrology, Dialysis, Transplantation, 18, 543–551.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The data of this study has been deposited to the MetaboLights repository (URL: http://www.ebi.ac.uk/metabolights/MTBLS24). This study was supported in part by the Bavarian Genomic Network (BayGene), the German Federal Ministry of Education and Research (BMBF Grant no. 01 ER 0821), and the intramural funding program of the Regensburg School of Medicine. The authors are grateful to Drs. Claudio Lottaz, Inka Appel, and Rainer Spang for helpful discussions regarding statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Gronwald.

Additional information

Helena U. Zacharias and Gunnar Schley contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zacharias, H.U., Schley, G., Hochrein, J. et al. Analysis of human urine reveals metabolic changes related to the development of acute kidney injury following cardiac surgery. Metabolomics 9, 697–707 (2013). https://doi.org/10.1007/s11306-012-0479-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-012-0479-4

Keywords

Navigation