Skip to main content
Log in

Stable isotope-resolved metabolomic analysis of lithium effects on glial-neuronal metabolism and interactions

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Despite the long-established therapeutic efficacy of lithium in the treatment of bipolar disorder (BPD), its molecular mechanism of action remains elusive. Newly developed stable isotope-resolved metabolomics (SIRM) is a powerful approach that can be used to elucidate systematically how lithium impacts glial and neuronal metabolic pathways and activities, leading ultimately to deciphering its molecular mechanism of action. The effect of lithium on the metabolism of three different 13C-labeled precursors ([U-13C]-glucose, 13C-3-lactate or 13C-2,3-alanine) was analyzed in cultured rat astrocytes and neurons by nuclear magnetic resonance (NMR) spectroscopy and gas chromatography mass spectrometry (GC-MS). Using [U-13C]-glucose, lithium was shown to enhance glycolytic activity and part of the Krebs cycle activity in both astrocytes and neurons, particularly the anaplerotic pyruvate carboxylation (PC). The PC pathway was previously thought to be active in astrocytes but absent in neurons. Lithium also stimulated the extracellular release of 13C labeled-lactate, -alanine (Ala), -citrate, and -glutamine (Gln) by astrocytes. Interrogation of neuronal pathways using 13C-3-lactate or 13C-2,3-Ala as tracers indicated a high capacity of neurons to utilize lactate and Ala in the Krebs cycle, particularly in the production of labeled Asp and Glu via PC and normal cycle activity. Prolonged lithium treatment enhanced lactate metabolism via PC but inhibited lactate oxidation via the normal Krebs cycle in neurons. Such lithium modulation of glycolytic, PC and Krebs cycle activity in astrocytes and neurons as well as release of fuel substrates by astrocytes should help replenish Krebs cycle substrates for Glu synthesis while meeting neuronal demands for energy. Further investigations into the molecular regulation of these metabolic traits should provide new insights into the pathophysiology of mood disorders and early diagnostic markers, as well as new target(s) for effective therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BPD:

Bipolar disorder

PPP:

Pentose phosphate pathway

SIRM:

Stable isotope resolved metabolomics

TOCSY:

Total correlation spectroscopy

HSQC:

Heteronuclear single quantum coherence spectroscopy

[U-13C]-glucose:

Uniformly 13C labeled glucose

References

  • Basselin, M., Chang, L., & Rapoport, S. I. (2006). Chronic lithium chloride administration to rats elevates glucose metabolism in wide areas of brain, while potentiating negative effects on metabolism of dopamine D2-like receptor stimulation. Psychopharmacology (Berlin), 187, 303–311.

    Article  CAS  Google Scholar 

  • Berggren, U. (1985). The effect of acute lithium administration on brain monoamine synthesis and the precursor amino acids tyrosine and tryptophan in brain and plasma in rats. Journal of Neural Transmission, 61, 175–181.

    Article  CAS  PubMed  Google Scholar 

  • Birch, N. J., & Hughes, M. S. (1989). Lithium and magnesium-dependent processes in glucose metabolism. Physiologie, 26, 25–29.

    CAS  PubMed  Google Scholar 

  • Bittar, P. G., Charnay, Y., Pellerin, L., Bouras, C., & Magistretti, P. J. (1996). Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. Journal of Cerebral Blood Flow and Metabolism, 16, 1079–1089.

    CAS  PubMed  Google Scholar 

  • Bonvento, G., Herard, A. S., & Voutsinos-Porche, B. (2005). The astrocyte-neuron lactate shuttle: a debated but still valuable hypothesis for brain imaging. Journal of Cerebral Blood Flow and Metabolism, 25, 1394–1399.

    Article  CAS  PubMed  Google Scholar 

  • Bouzier-Sore, A. K., Serres, S., Canioni, P., & Merle, M. (2003). Lactate involvement in neuron-glia metabolic interaction: C-13-NMR spectroscopy contribution. Biochimie, 85, 841–848.

    Article  CAS  PubMed  Google Scholar 

  • Bouzier-Sore, A. K., Voisin, P., Bouchaud, V., Bezancon, E., Franconi, J. M., & Pellerin, L. (2006). Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. European Journal of Neuroscience, 24, 1687–1694.

    Article  PubMed  Google Scholar 

  • Chen, G., Masana, M. I., & Manji, H. K. (2000). Lithium regulates PKC-mediated intracellular cross-talk and gene expression in the CNS in vivo. Bipolar Disorder, 2, 217–236.

    Article  CAS  Google Scholar 

  • Chen, X., McMahon, E. G., & Gulve, E. A. (1998). Stimulatory effect of lithium on glucose transport in rat adipocytes is not mediated by elevation of IP1. American Journal of Physiology, 275, E272–E277.

    CAS  PubMed  Google Scholar 

  • Chen, R. W., Qin, Z. H., Ren, M., Kanai, H., Chalecka-Franaszek, E., Leeds, P., et al. (2003). Regulation of c-Jun N-terminal kinase, p38 kinase and AP-1 DNA binding in cultured brain neurons: roles in glutamate excitotoxicity and lithium neuroprotection. Journal of Neurochemistry, 84, 566–575.

    Article  CAS  PubMed  Google Scholar 

  • Engel, S. R., Creson, T. K., Hao, Y., Shen, Y., Maeng, S., Nekrasova, T., et al. (2009). The extracellular signal-regulated kinase pathway contributes to the control of behavioral excitement. Molecular Psychiatry, 14, 448–461.

    Article  CAS  PubMed  Google Scholar 

  • Fan, T. W.-M. (1996). Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Progress in Nuclear Magnetic Resonance Spectroscopy, 28, 161–219.

    CAS  Google Scholar 

  • Fan, T. W.-M., Bandura, L., Higashi, R., & Lane, A. (2005). Metabolomics-edited transcriptomics analysis of Se anticancer action in human lung cancer cells. Metabolomics Journal, 1, 325–339.

    Article  CAS  Google Scholar 

  • Fan, T. W.-M., Colmer, T. D., Lane, A. N., & Higashi, R. M. (1993). Determination of metabolites by H-1-NMR and GC––analysis for organic osmolytes in crude tissue-extracts. Analytical Biochemistry, 214, 260–271.

    Article  CAS  PubMed  Google Scholar 

  • Fan, T. W.-M., Higashi, R. M., & Lane, A. N. (2006). Integrating metabolomics and transcriptomics for probing Se anticancer mechanisms. Drug Metabolism Reviews, 38, 707–732.

    Article  CAS  PubMed  Google Scholar 

  • Fan, T. W.-M., Higashi, R. M., Lane, A. N., & Jardetzky, O. (1986). Combined use of H-1-NMR and Gc-Ms for metabolite monitoring and invivo H-1-NMR assignments. Biochimica et Biophysica Acta, 882, 154–167.

    CAS  PubMed  Google Scholar 

  • Fan, T. W.-M., Kucia, M., Jankowski, K., Higashi, R., Ratajczak, J., Ratajczak, M., et al. (2008). Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes. Molecular Cancer, 7, 79.

    Article  PubMed  Google Scholar 

  • Fan, T. W.-M., & Lane, A. N. (2008). Structure-based profiling of metabolites and isotopomers by NMR. Progress in NMR Spectroscopy, 52, 69–117.

    Article  CAS  Google Scholar 

  • Fan, T. W.-M., Lane, A. N., Higashi, R. M., Farag, M. A., Gao, H., Bousamra, M., et al. (2009). Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Molecular Cancer, 8, 41.

    Article  PubMed  Google Scholar 

  • Gould, T. D., & Manji, H. K. (2002). Signaling networks in the pathophysiology and treatment of mood disorders. Journal of Psychosomatic Research, 53, 687–697.

    Article  PubMed  Google Scholar 

  • Haberg, A., Qu, H., Haraldseth, O., Unsgard, G., & Sonnewald, U. (1998). In vivo injection of [1–13C]glucose and [1, 2–13C]acetate combined with ex vivo 13C nuclear magnetic resonance spectroscopy: a novel approach to the study of middle cerebral artery occlusion in the rat. Journal of Cerebral Blood Flow and Metabolism, 18, 1223–1232.

    CAS  PubMed  Google Scholar 

  • Hao, Y. L., Creson, T., Zhang, L., Li, P. P., Du, F., Yuan, P. X., et al. (2004). Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. Journal of Neuroscience, 24, 6590–6599.

    Article  CAS  PubMed  Google Scholar 

  • Hedgepeth, C. M., Conrad, L. J., Zhang, J., Huang, H. C., Lee, V. M., & Klein, P. S. (1997). Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Developmental Biology, 185, 82–91.

    Article  CAS  PubMed  Google Scholar 

  • Hertz, L., Peng, L., & Dienel, G. A. (2007). Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. Journal of Cerebral Blood Flow and Metabolism, 27, 219–249.

    Article  CAS  PubMed  Google Scholar 

  • Hirst, J., Sucheta, A., Ackrell, B. A. C., & Armstrong, F. A. (1996). Electrocatalytic voltammetry of succinate dehydrogenase: direct quantification of the catalytic properties of a complex electron-transport enzyme. Journal of the American Chemical Society, 118, 5031–5038.

    Article  CAS  Google Scholar 

  • Hoshi, M., Takashima, A., Noguchi, K., Murayama, M., Sato, M., Kondo, S., et al. (1996). Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain. Proceedings of the National Academy of Sciences of the United States of America, 93, 2719–2723.

    Article  CAS  PubMed  Google Scholar 

  • Hunsberger, J.G., Austin, D.R., Chen, G. and Manji, H.K. (2009) Cellular mechanisms underlying affective resiliency: the role of glucocorticoid receptor- and mitochondrially-mediated plasticity. Brain Res.

  • Hyder, F., Patel, A. B., Gjedde, A., Rothman, D. L., Behar, K. L., & Shulman, R. G. (2006). Neuronal-glial glucose oxidation and glutamatergic––GABAergic function. Journal of Cerebral Blood Flow and Metabolism, 26, 865–877.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, H. V., Aggernæs, H., Plenge, P., Mellerup, E. T., Stensgaard, A., Thomsen, C., et al. (1996). Twelve-hour brain lithium concentration in lithium maintenance treatment of manic-depressive disorder: daily versus alternate-day dosing schedule. Psychopharmacology, 124, 275–278.

    Article  CAS  PubMed  Google Scholar 

  • Jitrapakdee, S., St Maurice, M., Rayment, I., Cleland, W. W., Wallace, J. C., & Attwood, P. V. (2008). Structure, mechanism and regulation of pyruvate carboxylase. Biochemical Journal, 413, 369–387.

    Article  CAS  PubMed  Google Scholar 

  • Kaddurah-Daouk, R. (2009). Metabolomics: a global biochemical approach to the study of neuropsychiatric disorders. Biological Psychiatry, 65, 259.

    Google Scholar 

  • Kaddurah-Daouk, R., Kristal, B. S., & Weinshilboum, R. M. (2008). Metabolomics: a global biochemical approach to drug response and disease. Annual Review of Pharmacology and Toxicology, 48, 653–683.

    Article  CAS  PubMed  Google Scholar 

  • Kaddurah-Daouk, R., McEvoy, J., Baillie, R. A., Lee, D., Yao, J. K., Doraiswamy, P. M., et al. (2007). Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Molecular Psychiatry, 12, 934–945.

    Article  CAS  PubMed  Google Scholar 

  • Kohno, T., Shiga, T., Toyomaki, A., Kusumi, I., Matsuyama, T., Inoue, T., et al. (2007). Effects of lithium on brain glucose metabolism in healthy men. Journal of Clinical Psychopharmacology, 27, 698–702.

    Article  CAS  PubMed  Google Scholar 

  • Kristal, B. S., Kaddurah-Daouk, R., Beal, M. F., & Matson, W. R. (2007). Metabolomics: concept and potential neuroscience application. In: Handbook of neurochemistry and molecular neurobiology: brain energetics. Integration of molecular and cellular processes (pp. 889–912). New York: Springer.

  • Lane, A. N., & Fan, T. W.-M. (2007). Quantification and identification of isotopomer distributions of metabolites in crude cell extracts using 1H TOCSY. Metabolomics, 3, 79–86.

    Article  CAS  Google Scholar 

  • Lane, A. N., Fan, T. W.-M., & Higashi, R. M. (2008). Isotopomer-based metabolomic analysis by NMR and mass spectrometry. Methods in Cell Biology, 84, 541–588.

    Article  CAS  PubMed  Google Scholar 

  • Lane, A. N., Fan, T. W.-M., Xie, X., Moseley, H. N., & Higashi, R. M. (2009). Stable isotope analysis of lipid biosynthesis by high resolution mass spectrometry and NMR. Analytica Chimica Acta, 651, 201–208.

    Article  CAS  PubMed  Google Scholar 

  • Lindon, J. C., Holmes, E., & Nicholson, J. K. (2007). Metabonomics in pharmaceutical R&D. FEBS Journal, 274, 1149–1151.

    Article  Google Scholar 

  • Magistretti, P. J. (2009). Role of glutamate in neuron-glia metabolic coupling. American Journal of Clinical Nutrition, 90, 875S–880S.

    Article  CAS  PubMed  Google Scholar 

  • Manji, H. K., Moore, G. J., & Chen, G. (1999). Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biological Psychiatry, 46, 929–940.

    Article  CAS  PubMed  Google Scholar 

  • Manji, H. K., Moore, G. J., Rajkowska, G., & Chen, G. (2000). Neuroplasticity and cellular resilience in mood disorders. Molecular Psychiatry, 5, 578–593.

    Article  CAS  PubMed  Google Scholar 

  • Manji, H. K., Potter, W. Z., & Lenox, R. H. (1995). Signal transduction pathways. Molecular targets for lithium’s actions. Archives of General Psychiatry, 52, 531–543.

    CAS  PubMed  Google Scholar 

  • Marcus, S. R., Nadiger, H. A., Chandrakala, M. V., Rao, T. I., & Sadasivudu, B. (1986). Acute and short-term effects of lithium on glutamate metabolism in rat brain. Biochemical Pharmacology, 35, 365–369.

    Article  CAS  PubMed  Google Scholar 

  • Mason, G. F., Petersen, K. F., de Graaf, R. A., Shulman, G. I., & Rothman, D. L. (2007). Measurements of the anaplerotic rate in the human cerebral cortex using C-13 magnetic resonance spectroscopy and [1-C-13] and [2-C-13] glucose. Journal of Neurochemistry, 100, 73–86.

    Article  CAS  PubMed  Google Scholar 

  • Nordenberg, J., Kaplansky, M., Beery, E., Klein, S., & Beitner, R. (1982). Effects of lithium on the activities of phosphofructokinase and phosphoglucomutase and on glucose-1, 6-diphosphate levels in rat muscles, brain and liver. Biochemical Pharmacology, 31, 1025–1031.

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell, T., Rotzinger, S., Ulrich, M., Hanstock, C. C., Nakashima, T. T., & Silverstone, P. H. (2003). Effects of chronic lithium and sodium valproate on concentrations of brain amino acids. European Neuropsychopharmacology, 13, 220–227.

    Article  PubMed  Google Scholar 

  • Paige, L. A., Mitchell, M. W., Krishnan, K. R. R., Kaddurah-Daouk, R., & Steffens, D. C. (2007). A preliminary metabolomic analysis of older adults with and without depression. International Journal of Geriatric Psychiatry, 22, 418–423.

    Article  PubMed  Google Scholar 

  • Patel, A. B., de Graaf, R. A., Mason, G. F., Kanamatsu, T., Rothman, D. L., Shulman, R. G., et al. (2004). Glutamatergic neurotransmission and neuronal glucose oxidation are coupled during intense neuronal activation. Journal of Cerebral Blood Flow and Metabolism, 24, 972–985.

    CAS  PubMed  Google Scholar 

  • Pellerin, L., Bouzier-Sore, A. K., Aubert, A., Serres, S., Merle, M., Costalat, R., et al. (2007). Activity-dependent regulation of energy metabolism by astrocytes: An update. Glia, 55, 1251–1262.

    Article  PubMed  Google Scholar 

  • Plenge, P. (1976). Acute lithium effects on rat brain glucose metabolism––in vivo. International Pharmacopsychiatry, 11, 84–92.

    CAS  PubMed  Google Scholar 

  • Plenge, P. (1982). Lithium effects on rat brain glucose metabolism in vivo. Effects after administration of lithium by various routes. Psychopharmacology (Berl), 77, 348–355.

    Article  CAS  Google Scholar 

  • Rozen, S., Cudkowicz, M. E., Bogdanov, M., Matson, W. R., Kristal, B. S., Beecher, C., et al. (2005). Metabolomic analysis and signatures in motor neuron disease. Metabolomics, 1, 101–108.

    Article  CAS  PubMed  Google Scholar 

  • Schloesser, R. J., Huang, J., Klein, P. S., & Manji, H. K. (2008). Cellular plasticity cascades in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology, 33, 110–133.

    Article  CAS  PubMed  Google Scholar 

  • Serres, S., Raffard, G., Franconi, J. M., & Merle, M. (2008). Close coupling between astrocytic and neuronal metabolisms to fulfill anaplerotic and energy needs in the rat brain. Journal of Cerebral Blood Flow and Metabolism, 28, 712–724.

    Article  CAS  PubMed  Google Scholar 

  • Xu, S., & Shen, J. (2006). In vivo dynamic turnover of cerebral C-13 isotopomers from [U-(13) C]glucose. Journal of Magnetic Resonance, 182, 221–228.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Li, B. S., Zhao, W. Q., Chang, Y. H., Ma, W., Dragan, M., et al. (2002). Sex-related differences in MAPKs activation in rat astrocytes: effects of estrogen on cell death. Molecular Brain Research, 103, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Zwingmann, C., & Leibfritz, D. (2003). Regulation of glial metabolism studied by C-13-NMR. NMR in Biomedicine, 16, 370–399.

    Article  CAS  PubMed  Google Scholar 

  • Zwingmann, C., Richter-Landsberg, C., & Leibfritz, D. (2001). C-13 isotopomer analysis of glucose and alanine metabolism reveals cytosolic pyruvate compartmentation as part of energy metabolism in astrocytes. Glia, 34, 200–212.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

NMR spectra were recorded at the JG Brown Cancer Center NMR facility, and mass spectra were obtained from the Center for Regulatory and Environmental Analytical Metabolomics (CREAM) facility at the University of Louisville. Ioline Henter of NIMH provided invaluable editorial assistance. Financial support: The study was supported in part by NIH Grant Numbers P20RR018733 from the National Center for Research Resources, 1R01CA118434-01A2 (TF, ANL, RMH), 3R01CA118434-02S1 (TF, RMH), and R24GM078233 (RKD, TF) and National Science Foundation EPSCoR grant # EPS-0447479 (TF, ANL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Teresa W.-M. Fan or Rima Kaddurah-Daouk.

Additional information

T. W.-M. Fan and P. Yuan contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2.47 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, T.WM., Yuan, P., Lane, A.N. et al. Stable isotope-resolved metabolomic analysis of lithium effects on glial-neuronal metabolism and interactions. Metabolomics 6, 165–179 (2010). https://doi.org/10.1007/s11306-010-0208-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-010-0208-9

Keywords

Navigation