Skip to main content

Advertisement

Log in

Electroacupuncture regulates the P2X7R-NLRP3 inflammatory cascade to relieve decreased sensation on ocular surface of type 2 diabetic rats with dry eye

  • Research
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Dry eye (DE) is a prevalent ocular surface disease in patients with type 2 diabetes (T2DM). However, current medications are ineffective against decreased sensation on the ocular surface. While electroacupuncture (EA) effectively alleviates decreased sensation on ocular surface of DE in patients with T2DM, the neuroprotective mechanism remains unclear. This study explored the pathogenesis and therapeutic targets of T2DM-associated DE through bioinformatics analysis. It further investigated the underlying mechanism by which EA improves decreased sensation on the ocular surface of DE in rats with T2DM. Bioinformatic analysis was applied to annotate the potential pathogenesis of T2DM DE. T2DM and DE was induced in male rats. Following treatment with EA and fluorometholone, comprehensive metrics were assessed. Additionally, the expression patterns of key markers were studied. Key targets such as NLRP3, Caspase-1, and NOD-like receptor signaling may be involved in the pathogenesis of T2DM DE. EA treatment improved ocular measures. Furthermore, EA potently downregulated P2X7R, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1 expression within the trigeminal ganglion and spinal trigeminal nucleus caudalis. Targeted P2X7R antagonist (A-438079) and agonist (BzATP) employed as controls to decipher the biochemistry of the therapeutic effects of EA showed an anti-inflammatory effect with A-438079, while BzATP blocked the anti-inflammatory effect of EA. EA relieved DE symptoms and attenuated inflammatory damage to sensory nerve pathways in T2DM rats with DE. These findings suggest a crucial role of EA inhibition of the P2X7R-NLRP3 inflammatory cascade to provide these benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used to support the results of this study can be obtained from the corresponding author upon reasonable request. All the images are consented to be published.

References

  1. Kotwas A, Karakiewicz B, Zabielska P et al (2021) Epidemiological factors for type 2 diabetes mellitus: evidence from the Global Burden of Disease. Arch Public Health 79(1):110. https://doi.org/10.1186/s13690-021-00632-1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ribeiro MVMR, Barbosa FT, Ribeiro LEF et al (2016) Clinical features of diabetic patients with dry eye disease in a community in Maceio: a cross-sectional study. Rev Bras Oftalmol 75:121–126. https://doi.org/10.5935/0034-7280.20160026

    Article  Google Scholar 

  3. Han SB, Yang HK, Hyon JY (2019) Influence of diabetes mellitus on anterior segment of the eye. Clin Interv Aging 14:53–63. https://doi.org/10.2147/CIA.S190713

    Article  CAS  PubMed  Google Scholar 

  4. Liu R, Ma B, Gao Y et al (2019) Tear inflammatory cytokines analysis and clinical correlations in diabetes and nondiabetes with dry eye. Am J Ophthalmol 200:10–15. https://doi.org/10.1016/j.ajo.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  5. Galor A, Moein HR, Lee C et al (2018) Neuropathic pain and dry eye. Ocul Surf 16(1):31–44. https://doi.org/10.1016/j.jtos.2017.10.001

    Article  PubMed  Google Scholar 

  6. Yoo TK, Oh E (2019) Diabetes mellitus is associated with dry eye syndrome: a meta-analysis. Int Ophthalmol 39(11):2611–2620. https://doi.org/10.1007/s10792-019-01110-y

    Article  PubMed  Google Scholar 

  7. Ding N, Wei Q, Deng W et al (2021) Electroacupuncture alleviates inflammation of dry eye diseases by regulating the α 7nAChR/NF- κ B signaling pathway. Oxid Med Cell Longev 2021:6673610. https://doi.org/10.1155/2021/6673610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yt Yang, Wei BJ, Zhao Y et al (2020) Effects of electroacupuncture on conjunctival cell apoptosis and the expressions of apoptosis-related proteins Caspase-3, Fas and Bcl-2 in rabbits with dry eye syndrome. J Acupunct Tuina Sci 18:16–23. https://doi.org/10.1007/s11726-020-1152-5

    Article  Google Scholar 

  9. Sun XY, Shen HX, Liu CY et al (2022) Acupuncture mitigates ocular surface inflammatory response via α7nAChR/NF-κB p65 signaling in dry eye guinea pigs. Zhen Ci Yan Jiu 47(11):975–82. https://doi.org/10.13702/j.1000-0607.20220015

    Article  PubMed  Google Scholar 

  10. Xue Y, Zhao YD, Yuan YJ et al (2017) 32 cases of dry eye of diabetes with deficiency of both qi and yin treated with acupuncture method of “entering fire and tonifying.” Res Tradit Chin Med 30(11):50–52

    Google Scholar 

  11. Liu Y, Huang H, Gao R et al (2020) Dynamic phenotypes and molecular mechanisms to understand the pathogenesis of diabetic nephropathy in two widely used animal models of type 2 diabetes mellitus. Front Cell Dev Biol 8:172. https://doi.org/10.3389/fcell.2020.00172

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  12. Sen Y, Wu Y, Zheng Z et al (2022) Impacts of electroacupuncture at auricular concha on gastrointestinal motility in the rats with type 2 diabetes. World J Acupunct-Moxibustion 32(2):142–148. https://doi.org/10.1016/j.wjam.2021.11.008

    Article  Google Scholar 

  13. Fakih D, Zhao Z, Nicolle P et al (2019) Chronic dry eye induced corneal hypersensitivity, neuroinflammatory responses, and synaptic plasticity in the mouse trigeminal brainstem. J Neuroinflammation 16(1):268. https://doi.org/10.1186/s12974-019-1656-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li ZR (2003) Experimental acupuncture and moxibustion, 2nd edn. China Traditional Chinese Medicine Press, Beijing

  15. Jin T, Liu X, Li Y et al (2023) Electroacupuncture reduces ocular surface neuralgia in dry-eyed guinea pigs by inhibiting the trigeminal ganglion and spinal trigeminal nucleus caudalis P2X 3 R-PKC signaling pathway. Curr Eye Res 48(6):546–556. https://doi.org/10.1080/02713683.2023.2176886

    Article  CAS  PubMed  Google Scholar 

  16. Chen ZX, Li Y, Zhang XG et al (2017) Sham electroacupuncture methods in randomized controlled trials. Sci Rep 7:40837. https://doi.org/10.1038/srep40837

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Huang C, Chi XS, Li R et al (2017) Inhibition of P2X7 receptor ameliorates nuclear factor-kappa B mediated neuroinflammation induced by status epilepticus in rat hippocampus. J Mol Neurosci 63(2):173–184. https://doi.org/10.1007/s12031-017-0968-z

    Article  CAS  PubMed  Google Scholar 

  18. Bereiter DA, Rahman M, Ahmed F et al (2022) Title: P2x7 receptor activation and estrogen status drive neuroinflammatory mechanisms in a rat model for dry eye. Front Pharmacol 13:827244. https://doi.org/10.3389/fphar.2022.827244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu H, Lin L, Du X et al (2020) Study on the potential effective ingredients of Xiaosheng prescription for dry eye disease. Biomed Pharmacother 127:110051. https://doi.org/10.1016/j.biopha.2020.110051

    Article  CAS  PubMed  Google Scholar 

  20. Li H, Wei F, Li S et al (2020) The effect of sinomenine eye drops on experimental dry eye in mice. Cutan Ocul Toxicol 39(4):389–395. https://doi.org/10.1080/15569527.2020.1840580

    Article  CAS  PubMed  Google Scholar 

  21. Skrzypecki J, Huc T, Ciepiaszuk K et al (2019) Effect of TMAO, a gut-bacteria metabolite, on dry eye in a rat model. Curr Eye Res 44(6):651–656. https://doi.org/10.1080/02713683.2019.1574834

    Article  CAS  PubMed  Google Scholar 

  22. Bereiter DA, Rahman M, Thompson R et al (2018) TRPV1 and TRPM8 channels and nocifensive behavior in a rat model for dry eye. Invest Ophthalmol Vis Sci 59(8):3739–3746. https://doi.org/10.1167/iovs.18-24304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mishra A, Behura A, Kumar A et al (2021) P2X7 receptor in multifaceted cellular signalling and its relevance as a potential therapeutic target in different diseases. Eur J Pharmacol 906:174235. https://doi.org/10.1016/j.ejphar.2021.174235

    Article  CAS  PubMed  Google Scholar 

  24. Siedlecki AN, Smith SD, Siedlecki AR et al (2020) Ocular pain response to treatment in dry eye patients. Ocul Surf 18(2):305–311. https://doi.org/10.1016/j.jtos.2019.12.004

    Article  PubMed  Google Scholar 

  25. Sharma BR, Kanneganti TD (2021) NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol 22(5):550–559. https://doi.org/10.1038/s41590-021-00886-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ai X, Hou Y, Wang X et al (2019) Amelioration of dry eye syndrome in db/db mice with diabetes mellitus by treatment with Tibetan Medicine Formula Jikan Mingmu Drops. J Ethnopharmacol 241:111992. https://doi.org/10.1016/j.jep.2019.111992

    Article  PubMed  Google Scholar 

  27. Liu H, Sheng M, Liu Y et al (2015) Expression of SIRT1 and oxidative stress in diabetic dry eye. Int J Clin Exp Pathol 8(6):7644–7653

    PubMed  PubMed Central  Google Scholar 

  28. Zhou Q, Yang L, Wang Q et al (2022) Mechanistic investigations of diabetic ocular surface diseases. Front Endocrinol 13:1079541. https://doi.org/10.3389/fendo.2022.1079541. (Lausanne)

    Article  Google Scholar 

  29. Priyadarsini S, Whelchel A, Nicholas SE et al (2020) Diabetic keratopathy: Insights and challenges. Surv Ophthalmol 65(5):513–529. https://doi.org/10.1016/j.survophthal.2020.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xue J-F, Zhang B, Dou S et al (2021) Revealing the angiopathy of lacrimal gland lesion in type 2 diabetes. Front Physiol 12(0):0–0. https://doi.org/10.3389/fphys.2021.731234

  31. Zeng X, Lv Y, Zhongxiu Gu et al (2019) The effects of diabetic duration on lacrimal functional unit in patients with type II diabetes. J Ophthalmol 2019:1–11. https://doi.org/10.1155/2019/8127515

    Article  CAS  Google Scholar 

  32. Mingli Qu, Wan L, Dong M et al (2021) Hyperglycemia-induced severe mitochondrial bioenergetic deficit of lacrimal gland contributes to the early onset of dry eye in diabetic mice. Free Radical Biol Med 166:313–323. https://doi.org/10.1016/j.freeradbiomed.2021.02.036

    Article  CAS  Google Scholar 

  33. Amorim M, Martins B, Caramelo F et al (2022) Putative biomarkers in tears for diabetic retinopathy diagnosis. Front Med 9(0):0–0. https://doi.org/10.3389/fmed.2022.873483

  34. Zhang C, Xi L, Zhao S et al (2016) Interleukin-1β and tumour necrosis factor-α levels in conjunctiva of diabetic patients with symptomatic moderate dry eye: case–control study. BMJ Open 6(8):e010979–e010979. https://doi.org/10.1136/bmjopen-2015-010979

    Article  PubMed  PubMed Central  Google Scholar 

  35. Guo Y, Zhang H, Zhao Z et al (2022) Hyperglycemia induces meibomian gland dysfunction. Invest Ophthalmol Vis Sci 63(1):30–30. https://doi.org/10.1167/iovs.63.1.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu H, Fang X, Luo S et al (2022) Meibomian glands and tear film findings in type 2 diabetic patients: a cross-sectional study. Front Med 9(0):0–0. https://doi.org/10.3389/fmed.2022.762493

  37. Di Zazzo A, Coassin M, Micera A et al (2021) Ocular surface diabetic disease: a neurogenic condition? Ocul Surf 19:218–223. https://doi.org/10.1016/j.jtos.2020.09.006

    Article  PubMed  Google Scholar 

  38. Badian RA, Ekman L, Pripp AH et al (2023) Comparison of novel wide-field in vivo corneal confocal microscopy with skin biopsy for assessing peripheral neuropathy in type 2 diabetes. Diabetes 72(7):908–917. https://doi.org/10.2337/db22-0863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu SQ, Hu JL, Zou FL et al (2022) P2X7 receptor in inflammation and pain. Brain Res Bull 187:199–209. https://doi.org/10.1016/j.brainresbull.2022.07.006

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Z, Guo H, Hu Z et al (2023) Schisandrin B alleviates diabetic cardiac autonomic neuropathy induced by P2X7 receptor in superior cervical ganglion via NLRP3. Dis Markers 2023:9956950. https://doi.org/10.1155/2023/9956950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dastgheib M, Shetab-Boushehri SV, Baeeri M et al (2022) Rolipram and pentoxifylline combination ameliorates experimental diabetic neuropathy through inhibition of oxidative stress and inflammatory pathways in the dorsal root ganglion neurons. Metab Brain Dis 37(7):2615–2627. https://doi.org/10.1007/s11011-022-01060-y

    Article  CAS  PubMed  Google Scholar 

  42. Jing G, Wang H, Nan F et al (2021) Naofucong ameliorates high glucose induced hippocampal neuron injury through suppressing P2X7/NLRP1/caspase-1 pathway. Front Pharmacol 12:647116. https://doi.org/10.3389/fphar.2021.647116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu QQ, He XF, Ma YQ et al (2023) Dorsal root ganglia P2X4 and P2X7 receptors contribute to diabetes-induced hyperalgesia and the downregulation of electroacupuncture on P2X4 and P2X7. Purinergic Signal 19:29–41

    Article  CAS  PubMed  Google Scholar 

  44. Zhang J, Yang X, Zhang X et al (2021) Electro-acupuncture protects diabetic nephropathy-induced inflammation through suppression of NLRP3 inflammasome in renal macrophage isolation. Endocr Metab Immune Disord Drug Targets 21(11):2075–2083

    Article  CAS  PubMed  Google Scholar 

  45. Illes P, Muhammad Khan T, Rubini P (2017) Neuronal P2X7 receptors revisited: do they really exist? J Neurosci 37(30):7049–7062. https://doi.org/10.1523/jneurosci.3103-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jing G, Wang H, Nan F et al (2021) Naofucong ameliorates high glucose induced hippocampal neuron injury through suppressing P2X7/NLRP1/caspase-1 pathway. Front Pharmacol 12(0):0–0. https://doi.org/10.3389/fphar.2021.647116

  47. Abcouwer SF (2017) Müller cell–microglia cross talk drives neuroinflammation in diabetic retinopathy. Diabetes 66(2):261–263. https://doi.org/10.2337/dbi16-0047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang J, Gao L, Zhang Y, Wang H, Sun S, Wu L-A (2023) Involvement of microglial P2X7 receptor in pain modulation. CNS Neurosci Ther 00:1–11. https://doi.org/10.1111/cns.14496

  49. Wang A, Shi X, Yu R et al (2021) The p2x7 receptor is involved in diabetic neuropathic pain hypersensitivity mediated by TRPV1 in the rat dorsal root ganglion. Front Mol Neurosci 14(0):0–0. https://doi.org/10.3389/fnmol.2021.663649

  50. Evangelinellis MM, de Castro Souza R, Mendes CE et al (2021) Effects of a P2X7 receptor antagonist on myenteric neurons in the distal colon of an experimental rat model of ulcerative colitis. Histochem Cell Biol 157(1):65–81. https://doi.org/10.1007/s00418-021-02039-z

  51. Chen S, Ma Q, Krafft PR et al (2013) P2X7 receptor antagonism inhibits p38 mitogen-activated protein kinase activation and ameliorates neuronal apoptosis after subarachnoid hemorrhage in rats. Crit Care Med 41(12):e466–e474. https://doi.org/10.1097/ccm.0b013e31829a8246

    Article  CAS  PubMed  Google Scholar 

  52. Csölle C, Baranyi M, Zsilla G et al (2013) Neurochemical changes in the mouse hippocampus underlying the antidepressant effect of genetic deletion of P2X7 receptors. PLOS ONE 8(6):e66547–e66547. https://doi.org/10.1371/journal.pone.0066547

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  53. Guo Y, Guo C, Ha W et al (2019) Carnosine improves diabetic retinopathy via the MAPK/ERK pathway. Exp Ther Med 17(4):2641–2647. https://doi.org/10.3892/etm.2019.7223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang M, Chen Y, Yang MJ et al (2019) Celastrol attenuates renal injury in diabetic rats via MAPK/NF-κB pathway. Phytother Res 33(4):1191–1198. https://doi.org/10.1002/ptr.6314

    Article  CAS  PubMed  Google Scholar 

  55. Li S, Xu G (2022) Qishen Yiqi Dripping Pill protects diabetic nephropathy by inhibiting the PI3K-AKT signaling pathways in rats. Evid Based Complement Alternat Med 2022:6239829. https://doi.org/10.1155/2022/6239829

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fan Z, Dong J, Mu Y et al (2022) Nesfatin-1 protects against diabetic cardiomyopathy in the streptozotocin-induced diabetic mouse model via the p38-MAPK pathway. Bioengineered 13(6):14670–14681. https://doi.org/10.1080/21655979.2022.2066748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ren BC, Zhang YF, Liu SS et al (2020) Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. J Cell Mol Med 24(21):12355–12367. https://doi.org/10.1111/jcmm.15725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen L, Wang H, Xing J et al (2022) Silencing P2X7R alleviates diabetic neuropathic pain involving TRPV1 via PKCε/P38MAPK/NF-κB signaling pathway in rats. Int J Mol Sci 23(22). https://doi.org/10.3390/ijms232214141

  59. Khondkaryan L, Margaryan S, Poghosyan D et al (2018) Impaired inflammatory response to LPS in type 2 diabetes mellitus. Int J Inflam 2018:2157434. https://doi.org/10.1155/2018/2157434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to extend our gratitude to Dr. Qin-Mei Sun and Zhuo-Yuan Wang from the Shanghai University of Traditional Chinese Medicine for their invaluable suggestions on data processing and manuscript composition.

Funding

This study was supported by the National Natural Science Foundation of China (No. 82074526; Nanjing, China) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX23_2138; Nanjing, China).

Author information

Authors and Affiliations

Authors

Contributions

WPG and XYS conceptualized and designed the experiments. ZYTF and MMW executed the animal experiments. ZYW completed the data mining for bioinformatics analysis. TJ and ZYTF performed the statistical analyses, while TJ and MMW interpreted the data. MMW wrote the initial draft of the manuscript. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Xin-Yi Sun or Wei-Ping Gao.

Ethics declarations

Ethics approval

The animal experiments conformed to the relevant provisions of the national experimental animal welfare ethics and were approved by the Ethics Committee of the Affiliated Hospital of Nanjing University of Chinese Medicine (batch number: 2022NL-KS093).

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, MM., Fu, ZY., Jin, T. et al. Electroacupuncture regulates the P2X7R-NLRP3 inflammatory cascade to relieve decreased sensation on ocular surface of type 2 diabetic rats with dry eye. Purinergic Signalling (2024). https://doi.org/10.1007/s11302-024-09991-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11302-024-09991-0

Keywords

Navigation