Skip to main content
Log in

Chemical biology-based approaches to study adenosine A2A − dopamine D2 receptor heteromers

  • Journal Club
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ferré S, Casadó V, Devi LA, Filizola M, Jockers R, Lohse MJ, Milligan G, Pin JP, Guitart X (2014) G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev 66(2):413–434. https://doi.org/10.1124/pr.113.008052

    Article  CAS  Google Scholar 

  2. Hillion J, Canals M, Torvinen M, Casado V, Scott R, Terasmaa A, Hansson A, Watson S, Olah ME, Mallol J, Canela EI, Zoli M, Agnati LF, Ibanez CF, Lluis C, Franco R, Ferre S, Fuxe K (2002) Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 277(20):18091–18097. https://doi.org/10.1074/jbc.M107731200

    Article  CAS  Google Scholar 

  3. Canals M, Marcellino D, Fanelli F, Ciruela F, de Benedetti P, Goldberg SR, Neve K, Fuxe K, Agnati LF, Woods AS, Ferré S, Lluis C, Bouvier M, Franco R (2003) Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Biol Chem 278(47):46741–46749. https://doi.org/10.1074/jbc.M306451200

    Article  CAS  Google Scholar 

  4. Kamiya T, Saitoh O, Yoshioka K, Nakata H (2003) Oligomerization of adenosine A2A and dopamine D2 receptors in living cells. Biochem Biophys Res Commun 306(2):544–549. https://doi.org/10.1016/s0006-291x(03)00991-4

    Article  CAS  Google Scholar 

  5. Jörg M, May LT, Mak FS, Lee KC, Miller ND, Scammells PJ, Capuano B (2015) Synthesis and pharmacological evaluation of dual acting ligands targeting the adenosine A2A and dopamine D2 receptors for the potential treatment of Parkinson’s disease. J Med Chem 58(2):718–738. https://doi.org/10.1021/jm501254d

    Article  CAS  Google Scholar 

  6. Soriano A, Ventura R, Molero A, Hoen R, Casadó V, Cortés A, Fanelli F, Albericio F, Lluís C, Franco R, Royo M (2009) Adenosine A2A receptor-antagonist/dopamine D2 receptor-agonist bivalent ligands as pharmacological tools to detect A2A–D2 receptor heteromers. J Med Chem 52(18):5590–5602. https://doi.org/10.1021/jm900298c

    Article  CAS  Google Scholar 

  7. Hiller C, Kühhorn J, Gmeiner P (2013) Class A G-protein-coupled receptor (GPCR) dimers and bivalent ligands. J Med Chem 56(17):6542–6559. https://doi.org/10.1021/jm4004335

    Article  CAS  Google Scholar 

  8. Berque-Bestel I, Lezoualc’h F, Jockers R (2008) Bivalent ligands as specific pharmacological tools for G protein-coupled receptor dimers. Curr Drug Discov Technol 5(4):312–318. https://doi.org/10.2174/157016308786733591

    Article  CAS  Google Scholar 

  9. Fernández-Dueñas V, Gómez-Soler M, Valle-León M, Watanabe M, Ferrer I, Ciruela F (2019) Revealing adenosine A(2A)-dopamine D(2) receptor heteromers in Parkinson’s disease post-mortem brain through a new alphascreen-based assay. Int J Mol Sci 20(14):3600. https://doi.org/10.3390/ijms20143600

    Article  CAS  Google Scholar 

  10. Jörg M, Scammells PJ, Capuano B (2014) The dopamine D2 and adenosine A2A receptors: past, present and future trends for the treatment of Parkinson’s disease. Curr Med Chem 21(27):3188–3210. https://doi.org/10.2174/1389200215666140217110716

    Article  CAS  Google Scholar 

  11. Valle-León M, Callado LF, Aso E, Cajiao-Manrique MM, Sahlholm K, López-Cano M, Soler C, Altafaj X, Watanabe M, Ferré S, Fernández-Dueñas V, Menchón JM, Ciruela F (2021) Decreased striatal adenosine A2A-dopamine D2 receptor heteromerization in schizophrenia. Neuropsychopharmacology 46(3):665–672. https://doi.org/10.1038/s41386-020-00872-9

    Article  CAS  Google Scholar 

  12. Pulido D, Casadó-Anguera V, Gómez-Autet M, Llopart N, Moreno E, Casajuana-Martin N, Ferré S, Pardo L, Casadó V, Royo M (2022) Heterobivalent ligand for the adenosine A2A–dopamine D2 receptor heteromer. J Med Chem 65(1):616–632. https://doi.org/10.1021/acs.jmedchem.1c01763

    Article  CAS  Google Scholar 

  13. Navarro G, Cordomí A, Casadó-Anguera V, Moreno E, Cai N-S, Cortés A, Canela EI, Dessauer CW, Casadó V, Pardo L, Lluís C, Ferré S (2018) Evidence for functional pre-coupled complexes of receptor heteromers and adenylyl cyclase. Nat Commun 9(1):1242. https://doi.org/10.1038/s41467-018-03522-3

    Article  CAS  Google Scholar 

  14. Perreault ML, Hasbi A, O’Dowd BF, George SR (2014) Heteromeric dopamine receptor signaling complexes: emerging neurobiology and disease relevance. Neuropsychopharmacology 39(1):156–168. https://doi.org/10.1038/npp.2013.148

    Article  CAS  Google Scholar 

  15. Huang B, St. Onge CM, Ma H, Zhang Y (2021) Design of bivalent ligands targeting putative GPCR dimers. Drug Discov Today 26(1):189–199. https://doi.org/10.1016/j.drudis.2020.10.006

    Article  CAS  Google Scholar 

  16. Pérez-Benito L, Henry A, Matsoukas MT, Lopez L, Pulido D, Royo M, Cordomí A, Tresadern G, Pardo L (2018) The size matters? A computational tool to design bivalent ligands. Bioinformatics 34(22):3857–3863. https://doi.org/10.1093/bioinformatics/bty422

    Article  CAS  Google Scholar 

  17. Pulido D, Casadó-Anguera V, Pérez-Benito L, Moreno E, Cordomí A, López L, Cortés A, Ferré S, Pardo L, Casadó V, Royo M (2018) Design of a true bivalent ligand with picomolar binding affinity for a g protein-coupled receptor homodimer. J Med Chem 61(20):9335–9346. https://doi.org/10.1021/acs.jmedchem.8b01249

    Article  CAS  Google Scholar 

  18. Shonberg J, Scammells PJ, Capuano B (2011) Design strategies for bivalent ligands targeting GPCRs. ChemMedChem 6(6):963–974. https://doi.org/10.1002/cmdc.201100101

    Article  CAS  Google Scholar 

  19. Borroto-Escuela DO, Fuxe K (2019) Adenosine heteroreceptor complexes in the basal ganglia are implicated in Parkinson’s disease and its treatment. J Neural Transm 126(4):455–471. https://doi.org/10.1007/s00702-019-01969-2

    Article  CAS  Google Scholar 

  20. Cabello N, Gandía J, Bertarelli DCG, Watanabe M, Lluís C, Franco R, Ferré S, Luján R, Ciruela F (2009) Metabotropic glutamate type 5, dopamine D2 and adenosine A2A receptors form higher-order oligomers in living cells. J Neurochem 109(5):1497–1507. https://doi.org/10.1111/j.1471-4159.2009.06078.x

    Article  CAS  Google Scholar 

Download references

Funding

Manuela Jörg holds a Newcastle/Monash University Academic Track (NUMAcT) Fellowships funded by Research England (ref.131911). Research on GPCR heteromers in Dr Gregory’s lab has been supported by Australian Research Council Future fellowship (FT170100392); her current research is supported by National Health and Medical Research Council (Australia) 2002947.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Jörg.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflicts of interest

Manuela Jörg declares that she has no conflict of interest.

Karen J. Gregory declares that she has no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gregory, K.J., Jörg, M. Chemical biology-based approaches to study adenosine A2A − dopamine D2 receptor heteromers. Purinergic Signalling 18, 395–398 (2022). https://doi.org/10.1007/s11302-022-09860-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-022-09860-8

Navigation