Skip to main content

Advertisement

Log in

Effect of P2X purinergic receptors in tumor progression and as a potential target for anti-tumor therapy

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

The development of tumors is a complex pathological process involving multiple factors, multiple steps, and multiple genes. Their prevention and treatment have always been a difficult problem at present. A large number of studies have proved that the tumor microenvironment plays an important role in the progression of tumors. The tumor microenvironment is the place where tumor cells depend for survival, and it plays an important role in regulating the growth, proliferation, apoptosis, migration, and invasion of tumor cells. P2X purinergic receptors, which depend on the ATP ion channel, can be activated by ATP in the tumor microenvironment, and by mediating tumor cells and related cells (such as immune cells) in the tumor microenvironment. They play an important regulatory role on the effects of the skeleton, membrane fluidity, and intracellular molecular metabolism of tumor cells. Therefore, here, we outlined the biological characteristics of P2X purinergic receptors, described the effect of tumor microenvironment on tumor progression, and discussed the effect of ATP on tumor. Moreover, we explored the role of P2X purinergic receptors in the development of tumors and anti-tumor therapy. These data indicate that P2X purinergic receptors may be used as another potential pharmacological target for tumor prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tian X, Shen H, Li Z, Wang T, Wang S (2019) Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. J Hematol Oncol 12:84

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ji K, Mayernik L, Moin K, Sloane BF (2019) Acidosis and proteolysis in the tumor microenvironment. Cancer Metastasis Rev 38:103–112

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yang S, Gao H (2017) Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy. Pharmacol Res 126:97–108

    Article  CAS  PubMed  Google Scholar 

  4. Dubyak GR (2019) Luciferase-assisted detection of extracellular ATP and ATP metabolites during immunogenic death of cancer cells. Methods Enzymol 629:81–102

    Article  CAS  PubMed  Google Scholar 

  5. Zhang WJ, Hu CG, Zhu ZM et al (2020) Effect of P2X7 receptor on tumorigenesis and its pharmacological properties. Biomed Pharmacother 125:109844

    Article  CAS  PubMed  Google Scholar 

  6. Boison D, Yegutkin GG (2019) Adenosine metabolism: emerging concepts for Cancer therapy. Cancer Cell 36:582–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aymeric L, Apetoh L, Ghiringhelli F, Tesniere A, Martins I, Kroemer G, Smyth MJ, Zitvogel L (2010) Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Res 70:855–858

    Article  CAS  PubMed  Google Scholar 

  8. Di Virgilio F, Sarti AC, Falzoni S et al (2018) Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer 18:601–618

    Article  PubMed  CAS  Google Scholar 

  9. Farrell AW, Gadeock S, Pupovac A et al (1800) P2X7 receptor activation induces cell death and CD23 shedding in human RPMI 8226 multiple myeloma cells. Biochim Biophys Acta 2010:1173–1182

    Google Scholar 

  10. Burnstock G, Knight GE (2018) The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signal 14:1–18

    Article  CAS  PubMed  Google Scholar 

  11. Zhang WJ, Zhu ZM, Liu ZX (2020) The role and pharmacological properties of the P2X7 receptor in neuropathic pain. Brain Res Bull 155:19–28

    Article  CAS  PubMed  Google Scholar 

  12. Chen S, Feng W, Yang X, Yang W, Ru Y, Liao J, Wang L, Lin Y, Ren Q, Zheng G (2014) Functional expression of P2X family receptors in macrophages is affected by microenvironment in mouse T cell acute lymphoblastic leukemia. Biochem Biophys Res Commun 446:1002–1009

    Article  CAS  PubMed  Google Scholar 

  13. Feng L, Sun X, Csizmadia E, Han L, Bian S, Murakami T, Wang X, Robson SC, Wu Y (2011) Vascular CD39/ENTPD1 directly promotes tumor cell growth by scavenging extracellular adenosine triphosphate. Neoplasia. 13:206–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. North RA (2016) P2X receptors. Philos Trans R Soc Lond Ser B Biol Sci 371:20150427

    Article  CAS  Google Scholar 

  15. Burnstock G (2016) P2X ion channel receptors and inflammation. Purinergic Signal 12:59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kawate T (2017) P2X receptor activation. Adv Exp Med Biol 1051:55–69

    Article  PubMed  Google Scholar 

  17. Boldrini L, Giordano M, Alì G, Servadio A, Pelliccioni S, Niccoli C, Mussi A, Fontanini G (2014) P2X7 protein expression and polymorphism in non-small cell lung cancer (NSCLC). J Negat Results Biomed 13:16

    Article  PubMed  PubMed Central  Google Scholar 

  18. Al-Shukaili A, Al-Kaabi J, Hassan B et al (2011) P2X7 receptor gene polymorphism analysis in rheumatoid arthritis. Int J Immunogenet 38:389–396

    Article  CAS  PubMed  Google Scholar 

  19. Thunberg U, Tobin G, Johnson A, Söderberg O, Padyukov L, Hultdin M, Klareskog L, Enblad G, Sundström C, Roos G, Rosenquist R (2002) Polymorphism in the P2X7 receptor gene and survival in chronic lymphocytic leukaemia. Lancet. 360:1935–1939

    Article  CAS  PubMed  Google Scholar 

  20. Ralevic V (2015) P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease. Curr Med Chem 22:851–865

    Article  CAS  PubMed  Google Scholar 

  21. Zhang WJ, Zhu ZM, Liu ZX (2020) The role of P2X4 receptor in neuropathic pain and its pharmacological properties. Pharmacol Res 158:104875

    Article  CAS  PubMed  Google Scholar 

  22. Jørgensen NR, Syberg S, Ellegaard M (2015) The role of P2X receptors in bone biology. Curr Med Chem 22:902–914

    Article  PubMed  CAS  Google Scholar 

  23. Schmid R, Evans RJ (2019) ATP-gated P2X receptor channels: molecular insights into functional roles. Annu Rev Physiol 81:43–62

    Article  CAS  PubMed  Google Scholar 

  24. Hattori M, Gouaux E (2012) Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature. 485:207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Duan S, Neary JT (2006) P2X(7) receptors: properties and relevance to CNS function. Glia. 54:738–746

    Article  PubMed  Google Scholar 

  26. Yan Z, Li S, Liang Z, Tomić M, Stojilkovic SS (2008) The P2X7 receptor channel pore dilates under physiological ion conditions. J Gen Physiol 132:563–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Winkelmann VE, Thompson KE, Neuland K, Jaramillo AM, Fois G, Schmidt H, Wittekindt OH, Han W, Tuvim MJ, Dickey BF, Dietl P, Frick M (2019) Inflammation-induced upregulation of P2X4expression augments mucin secretion in airway epithelia. Am J Phys Lung Cell Mol Phys 316:L58–L70

    CAS  Google Scholar 

  28. Di Virgilio F (2015) P2X receptors and inflammation. Curr Med Chem 22:866–877

    Article  PubMed  CAS  Google Scholar 

  29. Burnstock G (2017) Purinergic signalling and neurological diseases: an update. CNS Neurol Disord Drug Targets 16:257–265

    Article  CAS  PubMed  Google Scholar 

  30. Soto F, Garcia-Guzman M, Gomez-Hernandez JM, Hollmann M, Karschin C, Stuhmer W (1996) P2X4: an ATP-activated ionotropic receptor cloned from rat brain. Proc Natl Acad Sci U S A 93:3684–3688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. He Y, Taylor N, Fourgeaud L, Bhattacharya A (2017) The role of microglial P2X7: modulation of cell death and cytokine release. J Neuroinflammation 14:135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Bele T, Fabbretti E (2015) P2X receptors, sensory neurons and pain. Curr Med Chem 22:845–850

    Article  CAS  PubMed  Google Scholar 

  33. Burnstock G (2015) Physiopathological roles of P2X receptors in the central nervous system. Curr Med Chem 22:819–844

    Article  CAS  PubMed  Google Scholar 

  34. Lee HY, Bardini M, Burnstock G (2000) Distribution of P2X receptors in the urinary bladder and the ureter of the rat. J Urol 163:2002–2007

    Article  CAS  PubMed  Google Scholar 

  35. Gever JR, Cockayne DA, Dillon MP, Burnstock G, Ford APDW (2006) Pharmacology of P2X channels. Pflugers Arch 452:513–537

    Article  CAS  PubMed  Google Scholar 

  36. Bae JY, Lee SW, Shin YH, Lee JH, Jahng JW, Park K (2017) P2X7 receptor and NLRP3 Inflammasome activation in head and neck cancer. Oncotarget. 8:48972–48982

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hope JM, Greenlee JD, King MR (2018) Mechanosensitive ion channels: TRPV4 and P2X7 in disseminating cancer cells. Cancer J 24:84–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jeong S, Zheng B, Wang H et al (1869) Nervous system and primary liver cancer. Biochim Biophys Acta Rev Cancer 2018:286–292

    Google Scholar 

  39. Hevia MJ, Castro P, Pinto K, Reyna-Jeldes M, Rodríguez-Tirado F, Robles-Planells C, Ramírez-Rivera S, Madariaga JA, Gutierrez F, López J, Barra M, de la Fuente-Ortega E, Bernal G, Coddou C (2019) Differential effects of purinergic signaling in gastric cancer-derived cells through P2Y and P2X receptors. Front Pharmacol 10:612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Adinolfi E, Capece M, Amoroso F, Marchi E, Franceschini A (2015) Emerging roles of P2X receptors in cancer. Curr Med Chem 22:878–890

    Article  CAS  PubMed  Google Scholar 

  41. Koch-Nolte F, Eichhoff A, Pinto-Espinoza C, Schwarz N, Schäfer T, Menzel S, Haag F, Demeules M, Gondé H, Adriouch S (2019) Novel biologics targeting the P2X7 ion channel. Curr Opin Pharmacol 47:110–118

    Article  CAS  PubMed  Google Scholar 

  42. Stokes L, Layhadi JA, Bibic L, Dhuna K, Fountain SJ (2017) P2X4 receptor function in the nervous system and current breakthroughs in pharmacology. Front Pharmacol 8:291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Blanc C, Hans S, Tran T, Granier C, Saldman A, Anson M, Oudard S, Tartour E (2018) Targeting resident memory T cells for cancer immunotherapy. Front Immunol 9:1722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Denton AE, Roberts EW, Fearon DT (2018) Stromal cells in the tumor microenvironment. Adv Exp Med Biol 1060:99–114

    Article  CAS  PubMed  Google Scholar 

  46. Danai LV, Babic A, Rosenthal MH, Dennstedt EA, Muir A, Lien EC, Mayers JR, Tai K, Lau AN, Jones-Sali P, Prado CM, Petersen GM, Takahashi N, Sugimoto M, Yeh JJ, Lopez N, Bardeesy N, Fernandez-del Castillo C, Liss AS, Koong AC, Bui J, Yuan C, Welch MW, Brais LK, Kulke MH, Dennis C, Clish CB, Wolpin BM, Vander Heiden MG (2018) Altered exocrine function can drive adipose wasting in early pancreatic cancer. Nature. 558:600–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Broers JL, Ramaekers FC (2014) The role of the nuclear lamina in cancer and apoptosis. Adv Exp Med Biol 773:27–48

    Article  CAS  PubMed  Google Scholar 

  48. Vlasova-St Louis I, Bohjanen PR (2017) Post-transcriptional regulation of cytokine and growth factor signaling in cancer. Cytokine Growth Factor Rev 33:83–93

    Article  CAS  PubMed  Google Scholar 

  49. Kim J, Bae JS (2016) Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediat Inflamm 2016:6058147

    Article  Google Scholar 

  50. Arneth B (2019) Tumor Microenvironment. Medicina (Kaunas) 56:15

    Article  Google Scholar 

  51. Hinshaw DC, Shevde LA (2019) The tumor microenvironment innately modulates cancer progression. Cancer Res 79:4557–4566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Asiaf A, Ahmad ST, Arjumand W, Zargar MA (2018) MicroRNAs in breast cancer: diagnostic and therapeutic potential. Methods Mol Biol 1699:23–43

    Article  CAS  PubMed  Google Scholar 

  53. Boldrini L, Giordano M, Alì G, Melfi F, Romano G, Lucchi M, Fontanini G (2015) P2X7 mRNA expression in non-small cell lung cancer: MicroRNA regulation and prognostic value. Oncol Lett 9(1):449–453

    Article  PubMed  Google Scholar 

  54. Huang S, Chen Y, Wu W, Ouyang N, Chen J, Li H, Liu X, Su F, Lin L, Yao Y (2013) miR-150 promotes human breast cancer growth and malignant behavior by targeting the pro-apoptotic purinergic P2X7 receptor. PLoS One 8:e80707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zheng L, Zhang X, Yang F, Zhu J, Zhou P, Yu F, Hou L, Xiao L, He Q, Wang B (2014) Regulation of the P2X7R by microRNA-216b in human breast cancer. Biochem Biophys Res Commun 452:197–204

    Article  CAS  PubMed  Google Scholar 

  56. Jelassi B, Chantôme A, Alcaraz-Pérez F, Baroja-Mazo A, Cayuela ML, Pelegrin P, Surprenant A, Roger S (2011) P2X(7) receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness. Oncogene. 30(18):2108–2122

    Article  CAS  PubMed  Google Scholar 

  57. Fu W, McCormick T, Qi X, Luo L, Zhou L, Li X, Wang BC, Gibbons HE, Abdul-Karim FW, Gorodeski GI (2009) Activation of P2X(7)-mediated apoptosis inhibits DMBA/TPA-induced formation of skin papillomas and cancer in mice. BMC Cancer 9:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Huang Y, Lin D, Taniguchi CM (2017) Hypoxia inducible factor (HIF) in the tumor microenvironment: friend or foe? Sci China Life Sci 60:1114–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Parks SK, Cormerais Y, Pouysségur J (2017) Hypoxia and cellular metabolism in tumour pathophysiology. J Physiol 595:2439–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ni C, Ma P, Qu L, Wu F, Hao J, Wang R, Lu Y, Yang W, Erben U, Qin Z (2017) Accelerated tumour metastasis due to interferon-γ receptor-mediated dissociation of perivascular cells from blood vessels. J Pathol 242:334–346

    Article  CAS  PubMed  Google Scholar 

  61. Casola S, Perucho L, Tripodo C, Sindaco P, Ponzoni M, Facchetti F (2019) The B-cell receptor in control of tumor B-cell fitness: biology and clinical relevance. Immunol Rev 288:198–213

    Article  CAS  PubMed  Google Scholar 

  62. Hajizadeh F, Okoye I, Esmaily M, Ghasemi Chaleshtari M, Masjedi A, Azizi G, Irandoust M, Ghalamfarsa G, Jadidi-Niaragh F (2019) Hypoxia inducible factors in the tumor microenvironment as therapeutic targets of cancer stem cells. Life Sci 237:116952

    Article  CAS  PubMed  Google Scholar 

  63. Joseph JP, Harishankar MK, Pillai AA, Devi A (2018) Hypoxia induced EMT: a review on the mechanism of tumor progression and metastasis in OSCC. Oral Oncol 80:23–32

    Article  CAS  PubMed  Google Scholar 

  64. Tong WW, Tong GH, Liu Y (2018) Cancer stem cells and hypoxia-inducible factors (review). Int J Oncol 53:469–476

    CAS  PubMed  Google Scholar 

  65. Koka P, Mundre RS, Rangarajan R, Chandramohan Y, Subramanian RK, Dhanasekaran A (2018) Uncoupling Warburg effect and stemness in CD133+ve cancer stem cells from Saos-2 (osteosarcoma) cell line under hypoxia. Mol Biol Rep 45:1653–1662

    Article  CAS  PubMed  Google Scholar 

  66. Albuquerque APB, Balmaña M, Mereiter S, Pinto F, Reis CA, Beltrão EIC (2018) Hypoxia and serum deprivation induces glycan alterations in triple negative breast cancer cells. Biol Chem 399:661–672

    Article  CAS  PubMed  Google Scholar 

  67. Lu J, Tan M, Cai Q (2015) The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett 356:156–164

    Article  CAS  PubMed  Google Scholar 

  68. Xiao H, Li TK, Yang JM, Liu LF (2003) Acidic pH induces topoisomerase II-mediated DNA damage. Proc Natl Acad Sci U S A 100:5205–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brisson L, Reshkin SJ, Goré J, Roger S (2012) pH regulators in invadosomal functioning: proton delivery for matrix tasting. Eur J Cell Biol 91:847–860

    Article  CAS  PubMed  Google Scholar 

  70. García-Venzor A, Mandujano-Tinoco EA, Lizarraga F, Zampedri C, Krötzsch E, Salgado RM, Dávila-Borja VM, Encarnación-Guevara S, Melendez-Zajgla J, Maldonado V (2019) Microenvironment-regulated lncRNA-HAL is able to promote stemness in breast cancer cells. Biochim Biophys Acta, Mol Cell Res 1866:118523

    Article  CAS  Google Scholar 

  71. Riemann A, Reime S, Thews O (2017) Hypoxia-related tumor acidosis affects MicroRNA expression pattern in prostate and breast tumor cells. Adv Exp Med Biol 977:119–124

    Article  CAS  PubMed  Google Scholar 

  72. Humbert M, Guery L, Brighouse D, Lemeille S, Hugues S (2018) Intratumoral CpG-B promotes antitumoral neutrophil, cDC, and T-cell cooperation without reprograming tolerogenic pDC. Cancer Res 78:3280–3292

    Article  CAS  PubMed  Google Scholar 

  73. Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14:1014–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ali I, Alfarouk KO, Reshkin SJ, Ibrahim ME (2017) Doxycycline as potential anti-cancer agent. Anti Cancer Agents Med Chem 17:1617–1623

    CAS  Google Scholar 

  75. Zhang Y, Dang M, Tian Y, Zhu Y, Liu W, Tian W, Su Y, Ni Q, Xu C, Lu N, Tao J, Li Y, Zhao S, Zhao Y, Yang Z, Sun L, Teng Z, Lu G (2017) Tumor acidic microenvironment targeted drug delivery based on pHLIP-modified mesoporous organosilica nanoparticles. ACS Appl Mater Interfaces 9:30543–30552

    Article  CAS  PubMed  Google Scholar 

  76. Hu CF, Huang YY, Wang YJ et al (2016) Upregulation of ABCG2 via the PI3K-Akt pathway contributes to acidic microenvironment-induced cisplatin resistance in A549 and LTEP-a-2 lung cancer cells. Oncol Rep 36:455–461

    Article  CAS  PubMed  Google Scholar 

  77. Monti D, Tampucci S, Zucchetti E, Granchi C, Minutolo F, Piras AM (2018) Effect of tumor relevant acidic environment in the interaction of a N-hydroxyindole-2-carboxylic derivative with the phospholipid bilayer. Pharm Res 35:175

    Article  PubMed  CAS  Google Scholar 

  78. Kim SR, Kim EH (2016) Effects of chronic exposure to acidic environment on the response of tumor cells to radiation. Int J Radiat Biol 92:502–507

    Article  CAS  PubMed  Google Scholar 

  79. Egelston CA, Avalos C, Tu TY et al (2019) Resident memory CD8+ T cells within cancer islands mediate survival in breast cancer patients. JCI Insight 4:130000

    Article  PubMed  Google Scholar 

  80. Ferrari SM, Fallahi P, Galdiero MR et al (2019) Immune and inflammatory cells in thyroid cancer microenvironment. Int J Mol Sci 20:E4413

    Article  PubMed  CAS  Google Scholar 

  81. Alissafi T, Hatzioannou A, Legaki AI, Varveri A, Verginis P (2019) Balancing cancer immunotherapy and immune-related adverse events: the emerging role of regulatory T cells. J Autoimmun 104:102310

    Article  CAS  PubMed  Google Scholar 

  82. Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, Xia H, Zhou J, Li G, Li J, Li W, Wei S, Vatan L, Zhang H, Szeliga W, Gu W, Liu R, Lawrence TS, Lamb C, Tanno Y, Cieslik M, Stone E, Georgiou G, Chan TA, Chinnaiyan A, Zou W (2019) CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 569:270–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Duong MN, Erdes E, Hebeisen M, Rufer N (2019) Chronic TCR-MHC (self)-interactions limit the functional potential of TCR affinity-increased CD8 T lymphocytes. J Immunother Cancer 7:284

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kishton RJ, Sukumar M, Restifo NP (2017) Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab 26:94–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ostroumov D, Fekete-Drimusz N, Saborowski M, Kühnel F, Woller N (2018) CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell Mol Life Sci 75:689–713

    Article  CAS  PubMed  Google Scholar 

  86. Rangarajan S, Mariuzza RA (2014) T cell receptor bias for MHC: co-evolution or co-receptors? Cell Mol Life Sci 71:3059–3068

    Article  CAS  PubMed  Google Scholar 

  87. DeWitt WS 3rd, Smith A, Schoch G et al (2018) Human T cell receptor occurrence patterns encode immune history, genetic background, and receptor specificity. Elife. 7:e38358

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wing JB, Tanaka A, Sakaguchi S (2019) Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer. Immunity. 50:302–316

    Article  CAS  PubMed  Google Scholar 

  89. Tanaka A, Sakaguchi S (2017) Regulatory T cells in cancer immunotherapy. Cell Res 27:109–118

    Article  CAS  PubMed  Google Scholar 

  90. Mpakou VE, Ioannidou HD, Konsta E, Vikentiou M, Spathis A, Kontsioti F, Kontos CK, Velentzas AD, Papageorgiou S, Vasilatou D, Gkontopoulos K, Glezou I, Stavroulaki G, Mpazani E, Kokkori S, Kyriakou E, Karakitsos P, Dimitriadis G, Pappa V (2017) Quantitative and qualitative analysis of regulatory T cells in B cell chronic lymphocytic leukemia. Leuk Res 60:74–81

    Article  CAS  PubMed  Google Scholar 

  91. Zahran AM, Mohammed Saleh MF, Sayed MM, Rayan A, Ali AM, Hetta HF (2018) Up-regulation of regulatory T cells, CD200 and TIM3 expression in cytogenetically normal acute myeloid leukemia. Cancer Biomark 22:587–595

    Article  CAS  PubMed  Google Scholar 

  92. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14:399–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zong S, Li J, Ye Z et al (2019) Lachnum polysaccharide suppresses S180 sarcoma by boosting anti-tumor immune responses and skewing tumor-associated macrophages toward M1 phenotype. Int J Biol Macromol S0141-8130:36746–36747

    Google Scholar 

  94. Valipour B, Velaei K, Abedelahi A, Karimipour M, Darabi M, Charoudeh HN (2019) NK cells: an attractive candidate for cancer therapy. J Cell Physiol 234:19352–19365

    Article  CAS  PubMed  Google Scholar 

  95. Shimasaki N, Jain A, Campana D (2020) NK cells for cancer immunotherapy. Nat Rev Drug Discov 19:200–218

    Article  CAS  PubMed  Google Scholar 

  96. Groth C, Hu X, Weber R et al (2019) Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer 120:16–25

    Article  CAS  PubMed  Google Scholar 

  97. Bianchi G, Vuerich M, Pellegatti P, Marimpietri D, Emionite L, Marigo I, Bronte V, Di Virgilio F, Pistoia V, Raffaghello L (2014) ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment. Cell Death Dis 5:e1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yao M, Fan X, Yuan B, Takagi N, Liu S, Han X, Ren J, Liu J (2019) Berberine inhibits NLRP3 Inflammasome pathway in human triple-negative breast cancer MDA-MB-231 cell. BMC Complement Altern Med 19:216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Adinolfi E, Capece M, Franceschini A, Falzoni S, Giuliani AL, Rotondo A, Sarti AC, Bonora M, Syberg S, Corigliano D, Pinton P, Jorgensen NR, Abelli L, Emionite L, Raffaghello L, Pistoia V, Di Virgilio F (2015) Accelerated tumor progression in mice lacking the ATP receptor P2X7. Cancer Res 75:635–644

    Article  CAS  PubMed  Google Scholar 

  100. Wei W, Ryu JK, Choi HB, McLarnon JG (2008) Expression and function of the P2X(7) receptor in rat C6 glioma cells. Cancer Lett 260:79–87

    Article  CAS  PubMed  Google Scholar 

  101. Fang KM, Wang YL, Huang MC, Sun SH, Cheng H, Tzeng SF (2018) Expression of macrophage inflammatory protein-1α and monocyte chemoattractant protein-1 in glioma-infiltrating microglia: involvement of ATP and P2X7 receptor. J Neurosci Res 89:199–211

    Article  CAS  Google Scholar 

  102. Kalluri R (2016) The biology and function of exosomes in cancer. J Clin Invest 126:1208–1215

    Article  PubMed  PubMed Central  Google Scholar 

  103. Whiteside TL (2016) Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem 74:103–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhao C, Gao F, Weng S, Liu Q (2017) Pancreatic cancer and associated exosomes. Cancer Biomark 20:357–367

    Article  CAS  PubMed  Google Scholar 

  105. Greening DW, Gopal SK, Xu R, Simpson RJ, Chen W (2015) Exosomes and their roles in immune regulation and cancer. Semin Cell Dev Biol 40:72–81

    Article  CAS  PubMed  Google Scholar 

  106. Zhang L, Yu D (1871) Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer 2019:455–468

    Google Scholar 

  107. Chen JH, Xiang JY, Ding GP, Cao LP (2016) Cholangiocarcinoma-derived exosomes inhibit the antitumor activity of cytokine-induced killer cells by down-regulating the secretion of tumor necrosis factor-α and perforin. J Zhejiang Univ Sci B 17:537–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Li C, Li C, Zhi C et al (2019) Clinical significance of PD-L1 expression in serum-derived exosomes in NSCLC patients. J Transl Med 17:355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16:582–598

    Article  CAS  PubMed  Google Scholar 

  110. Cho H, Seo Y, Loke KM, Kim SW, Oh SM, Kim JH, Soh J, Kim HS, Lee H, Kim J, Min JJ, Jung DW, Williams DR (2018) Cancer-stimulated CAFs enhance monocyte differentiation and protumoral TAM activation via IL6 and GM-CSF secretion. Clin Cancer Res 24:5407–5421

    Article  CAS  PubMed  Google Scholar 

  111. Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M, Worthley DL, Takahashi M, Worthley DL (2019) Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol 16:282–295

    Article  PubMed  Google Scholar 

  112. Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K (2019) Cyclooxygenase-2 in cancer: a review. J Cell Physiol 234:5683–5699

    Article  CAS  PubMed  Google Scholar 

  113. Su S, Chen J, Yao H et al (2018) CD10+GPR77+cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 172:841–856.e16

    Article  CAS  PubMed  Google Scholar 

  114. Rivera A, Vanzulli I, Butt AM (2016) A central role for ATP signalling in glial interactions in the CNS. Curr Drug Targets 17:1829–1833

    Article  CAS  PubMed  Google Scholar 

  115. Salewskij K, Rieger B, Hager F et al (2019) The spatio-temporal organization of mitochondrial F1FO ATP synthase in cristae depends on its activity mode. Biochim Biophys Acta Bioenerg 26:148091

    Google Scholar 

  116. Meurer F, Do HT, Sadowski G, Held C (2017) Standard Gibbs energy of metabolic reactions: II. Glucose-6-phosphatase reaction and ATP hydrolysis. Biophys Chem 223:30–38

    Article  CAS  PubMed  Google Scholar 

  117. Lertsuwan J, Ruchirawat M (2017) Inhibitory effects of ATP and adenosine on cholangiocarcinoma cell proliferation and motility. Anticancer Res 37:3553–3561

    CAS  PubMed  Google Scholar 

  118. Lee PJ, Woo SJ, Yoo HM et al (2019) Differential mechanism of ATP production occurs in response to succinylacetone in colon cancer cells. Molecules. 24:E3575

    Article  PubMed  CAS  Google Scholar 

  119. Dai K, Radin DP, Leonardi D et al (2019) PINK1 depletion sensitizes non-small cell lung cancer to glycolytic inhibitor 3-bromopyruvate: involvement of ROS and mitophagy. Pharmacol Rep 71:1184–1189

    Article  CAS  PubMed  Google Scholar 

  120. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12:860–875

    Article  CAS  PubMed  Google Scholar 

  121. Sagar V, Vatapalli R, Lysy B, Pamarthy S, Anker JF, Rodriguez Y, Han H, Unno K, Stadler WM, Catalona WJ, Hussain M, Gill PS, Abdulkadir SA (2019) EPHB4 inhibition activates ER stress to promote immunogenic cell death of prostate cancer cells. Cell Death Dis 10:801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Qian Y, Wang X, Liu Y, Li Y, Colvin RA, Tong L, Wu S, Chen X (2014) Extracellular ATP is internalized by macropinocytosis and induces intracellular ATP increase and drug resistance in cancer cells. Cancer Lett 351:242–251

    Article  CAS  PubMed  Google Scholar 

  123. Martins I, Tesniere A, Kepp O, Michaud M, Schlemmer F, Senovilla L, Séror C, Métivier D, Perfettini JL, Zitvogel L, Kroemer G (2009) Chemotherapy induces ATP release from tumor cells. Cell Cycle 8:3723–5728

    Article  CAS  PubMed  Google Scholar 

  124. Qian C, Chen Y, Zhu S, Yu J, Zhang L, Feng P, Tang X, Hu Q, Sun W, Lu Y, Xiao X, Shen QD, Gu Z (2016) ATP-responsive and near-infrared-emissive nanocarriers for anticancer drug delivery and real-time imaging. Theranostics. 6:1053–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mo R, Jiang T, DiSanto R, Tai W, Gu Z (2014) ATP-triggered anticancer drug delivery. Nat Commun 5:3364

    Article  PubMed  CAS  Google Scholar 

  126. Wang GH, Huang GL, Zhao Y, Pu XX, Li T, Deng JJ, Lin JT (2016) ATP triggered drug release and DNA co-delivery systems based on ATP responsive aptamers and polyethylenimine complexes. J Mater Chem B 4:3832–3841

    Article  CAS  PubMed  Google Scholar 

  127. Roger S, Jelassi B, Couillin I et al (1848) Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives. Biochim Biophys Acta 2015:2584–2602

    Google Scholar 

  128. Gorodeski GI (2009) P2X7-mediated chemoprevention of epithelial cancers. Expert Opin Ther Targets 13:1313–1332

    Article  CAS  PubMed  Google Scholar 

  129. Asif A, Khalid M, Manzoor S, Ahmad H, Rehman AU (2019) Role of purinergic receptors in hepatobiliary carcinoma in Pakistani population: an approach towards proinflammatory role of P2X4 and P2X7 receptors. Purinergic Signal 15:367–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang Y, Ding J, Wang L (2019) The role of P2X7 receptor in prognosis and metastasis of colorectal cancer. Adv Med Sci 64:388–394

    Article  PubMed  Google Scholar 

  131. Choi JH, Ji YG, Ko JJ, Cho HJ, Lee DH (2018) Activating P2X7 receptors increases proliferation of human pancreatic cancer cells via ERK1/2 and JNK. Pancreas. 47:643–651

    Article  CAS  PubMed  Google Scholar 

  132. Qiu Y, Li WH, Zhang HQ, et al. 2015 P2X7 mediates ATP-driven invasiveness in prostate cancer cells [published correction appears in PLoS One. 10:e0123388]

  133. Sun SH (2010) Roles of P2X7 receptor in glial and neuroblastoma cells: the therapeutic potential of P2X7 receptor antagonists. Mol Neurobiol 41:351–355

    Article  CAS  PubMed  Google Scholar 

  134. Zhang Y, Cheng H, Li W, Wu H, Yang Y (2019) Highly-expressed P2X7 receptor promotes growth and metastasis of human HOS/MNNG osteosarcoma cells via PI3K/Akt/GSK3β/β-catenin and mTOR/HIF1α/VEGF signaling. Int J Cancer 145:1068–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Xia J, Yu X, Tang L et al (2015) P2X7 receptor stimulates breast cancer cell invasion and migration via the AKT pathway. Oncol Rep 34:103–110

    Article  CAS  PubMed  Google Scholar 

  136. Qian F, Xiao J, Hu B, Sun N, Yin W, Zhu J (2017) High expression of P2X7R is an independent postoperative indicator of poor prognosis in colorectal cancer. Hum Pathol 64:61–68

    Article  CAS  PubMed  Google Scholar 

  137. Draganov D, Gopalakrishna-Pillai S, Chen YR, Zuckerman N, Moeller S, Wang C, Ann D, Lee PP (2015) Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep 5:16222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bian S, Sun X, Bai A, Zhang C, Li L, Enjyoji K, Junger WG, Robson SC, Wu Y (2013) P2X7 integrates PI3K/AKT and AMPK-PRAS40-mTOR signaling pathways to mediate tumor cell death. PLoS One 8:e60184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. de Andrade MP, Bian S, Savio LEB et al (2017) Hyperthermia and associated changes in membrane fluidity potentiate P2X7 activation to promote tumor cell death. Oncotarget. 8:67254–67268

    Article  Google Scholar 

  140. Solini A, Simeon V, Derosa L, Orlandi P, Rossi C, Fontana A, Galli L, di Desidero T, Fioravanti A, Lucchesi S, Coltelli L, Ginocchi L, Allegrini G, Danesi R, Falcone A, Bocci G (2015) Genetic interaction of P2X7 receptor and VEGFR-2 polymorphisms identifies a favorable prognostic profile in prostate cancer patients. Oncotarget. 6:28743–28754

    Article  PubMed  PubMed Central  Google Scholar 

  141. Amoroso F, Capece M, Rotondo A, Cangelosi D, Ferracin M, Franceschini A, Raffaghello L, Pistoia V, Varesio L, Adinolfi E (2015) The P2X7 receptor is a key modulator of the PI3K/GSK3β/VEGF signaling network: evidence in experimental neuroblastoma. Oncogene. 34:5240–5251

    Article  CAS  PubMed  Google Scholar 

  142. Guo LH, Trautmann K, Schluesener HJ (2004) Expression of P2X4 receptor in rat C6 glioma by tumor-associated macrophages and activated microglia. J Neuroimmunol 152:67–72

    Article  CAS  PubMed  Google Scholar 

  143. Schmid S, Kübler M, Korcan Ayata C, Lazar Z, Haager B, Hoßfeld M, Meyer A, Cicko S, Elze M, Wiesemann S, Zissel G, Passlick B, Idzko M (2015) Altered purinergic signaling in the tumor associated immunologic microenvironment in metastasized non-small-cell lung cancer. Lung Cancer 90:516–521

    Article  PubMed  Google Scholar 

  144. Khalid M, Manzoor S, Ahmad H, Asif A, Bangash TA, Latif A, Jaleel S (2018) Purinoceptor expression in hepatocellular virus (HCV)-induced and non-HCV hepatocellular carcinoma: an insight into the proviral role of the P2X4 receptor. Mol Biol Rep 45:2625–2630

    Article  CAS  PubMed  Google Scholar 

  145. Gómez-Villafuertes R, del Puerto A, Díaz-Hernández M, Bustillo D, Díaz-Hernández JI, Huerta PG, Artalejo AR, Garrido JJ, Miras-Portugal MT (2009) Ca2+/calmodulin-dependent kinase II signalling cascade mediates P2X7 receptor-dependent inhibition of neuritogenesis in neuroblastoma cells. FEBS J 276:5307–5325

    Article  PubMed  CAS  Google Scholar 

  146. Azimi I, Beilby H, Davis FM, Marcial DL, Kenny PA, Thompson EW, Roberts-Thomson SJ, Monteith GR (2016) Altered purinergic receptor-Ca2+ signaling associated with hypoxia-induced epithelial-mesenchymal transition in breast cancer cells. Mol Oncol 10:166–178

    Article  CAS  PubMed  Google Scholar 

  147. Coutinho-Silva R, Stahl L, Cheung KK, de Campos NE, de Oliveira Souza C, Ojcius DM, Burnstock G (2005) P2X and P2Y purinergic receptors on human intestinal epithelial carcinoma cells: effects of extracellular nucleotides on apoptosis and cell proliferation. Am J Physiol Gastrointest Liver Physiol 288:G1024–G1035

    Article  CAS  PubMed  Google Scholar 

  148. Shabbir M, Ryten M, Thompson C, Mikhailidis D, Burnstock G (2008) Purinergic receptor-mediated effects of ATP in high-grade bladder cancer. BJU Int 101:106–112

    CAS  PubMed  Google Scholar 

  149. Khan M, Spicer J (2019) The evolving landscape of cancer therapeutics. Handb Exp Pharmacol 260:43–79

    Article  CAS  PubMed  Google Scholar 

  150. Roland NJ, Bradley PJ (2014) The role of surgery in the palliation of head and neck cancer. Curr Opin Otolaryngol Head Neck Surg 22:101–108

    Article  PubMed  Google Scholar 

  151. Nörenberg W, Plötz T, Sobottka H, Chubanov V, Mittermeier L, Kalwa H, Aigner A, Schaefer M (2016) TRPM7 is a molecular substrate of ATP-evoked P2X7-like currents in tumor cells. J Gen Physiol 147:467–483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Mistafa O, Stenius U (2009) Statins inhibit Akt/PKB signaling via P2X7 receptor in pancreatic cancer cells. Biochem Pharmacol 78:1115–1126

    Article  CAS  PubMed  Google Scholar 

  153. Tsuzuki K, Ase A, Séguéla P, Nakatsuka T, Wang CY, She JX, Gu JG (2003) TNP-ATP-resistant P2X ionic current on the central terminals and somata of rat primary sensory neurons. J Neurophysiol 89:3235–3242

    Article  CAS  PubMed  Google Scholar 

  154. Cho JH, Jung KY, Jung Y, Kim MH, Ko H, Park CS, Kim YC (2013) Design and synthesis of potent and selective P2X3 receptor antagonists derived from PPADS as potential pain modulators. Eur J Med Chem 70:811–830

    Article  CAS  PubMed  Google Scholar 

  155. Chen K, Zhang J, Zhang W, Zhang J, Yang J, Li K, He Y (2013) ATP-P2X4 signaling mediates NLRP3 inflammasome activation: a novel pathway of diabetic nephropathy. Int J Biochem Cell Biol 45:932–943

    Article  CAS  PubMed  Google Scholar 

  156. Lämmer AB, Beck A, Grummich B, Förschler A, Krügel T, Kahn T, Schneider D, Illes P, Franke H, Krügel U (2011) The P2 receptor antagonist PPADS supports recovery from experimental stroke in vivo. PLoS One 6:e19983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Liñán-Rico A, Wunderlich JE, Enneking JT, Tso DR, Grants I, Williams KC, Otey A, Michel K, Schemann M, Needleman B, Harzman A, Christofi FL (2015) Neuropharmacology of purinergic receptors in human submucous plexus: involvement of P2X1, P2X2, P2X3 channels, P2Y and A3 metabotropic receptors in neurotransmission. Neuropharmacology. 95:83–99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Lambertucci C, Dal Ben D, Buccioni M et al (2015) Medicinal chemistry of P2X receptors: agonists and orthosteric antagonists. Curr Med Chem 22:915–928

    Article  CAS  PubMed  Google Scholar 

  159. Salaro E, Rambaldi A, Falzoni S, Amoroso FS, Franceschini A, Sarti AC, Bonora M, Cavazzini F, Rigolin GM, Ciccone M, Audrito V, Deaglio S, Pelegrin P, Pinton P, Cuneo A, di Virgilio F (2016) Involvement of the P2X7-NLRP3 axis in leukemic cell proliferation and death. Sci Rep 6:26280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. De Marchi E, Orioli E, Pegoraro A et al (2019) The P2X7 receptor modulates immune cells infiltration, ectonucleotidases expression and extracellular ATP levels in the tumor microenvironment. Oncogene. 38:3636–3650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Adinolfi E, Raffaghello L, Giuliani AL, Cavazzini L, Capece M, Chiozzi P, Bianchi G, Kroemer G, Pistoia V, di Virgilio F (2012) Expression of P2X7 receptor increases in vivo tumor growth. Cancer Res 72:2957–2969

    Article  CAS  PubMed  Google Scholar 

  162. Hofman P, Cherfils-Vicini J, Bazin M, Ilie M, Juhel T, Hebuterne X, Gilson E, Schmid-Alliana A, Boyer O, Adriouch S, Vouret-Craviari V (2015) Genetic and pharmacological inactivation of the purinergic P2RX7 receptor dampens inflammation but increases tumor incidence in a mouse model of colitis-associated cancer. Cancer Res 75:835–845

    Article  CAS  PubMed  Google Scholar 

  163. Brisson L, Chadet S, Lopez-Charcas O et al (2020) P2X7 receptor promotes mouse mammary cancer cell invasiveness and tumour progression, and is a target for anticancer treatment. Cancers (Basel) 12:E2342

    Article  CAS  Google Scholar 

  164. Ghalali A, Wiklund F, Zheng H, Stenius U, Högberg J (2014) Atorvastatin prevents ATP-driven invasiveness via P2X7 and EHBP1 signaling in PTEN-expressing prostate cancer cells. Carcinogenesis. 35:1547–1555

    Article  CAS  PubMed  Google Scholar 

  165. Takai E, Tsukimoto M, Harada H, Kojima S (2014) Autocrine signaling via release of ATP and activation of P2X7 receptor influences motile activity of human lung cancer cells. Purinergic Signal 10:487–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Park JH, Williams DR, Lee JH, Lee SD, Lee JH, Ko H, Lee GE, Kim S, Lee JM, Abdelrahman A, Müller CE, Jung DW, Kim YC (2016) Potent suppressive effects of 1-piperidinylimidazole based novel P2X7 receptor antagonists on cancer cell migration and invasion. J Med Chem 59:7410–7430

    Article  CAS  PubMed  Google Scholar 

  167. Vázquez-Cuevas FG, Martínez-Ramírez AS, Robles-Martínez L, Garay E, García-Carrancá A, Pérez-Montiel D, Castañeda-García C, Arellano RO (2014) Paracrine stimulation of P2X7 receptor by ATP activates a proliferative pathway in ovarian carcinoma cells. J Cell Biochem 115:1955–1966

    PubMed  Google Scholar 

  168. Zhang X, Meng L, He B et al (2009) The role of P2X7 receptor in ATP-mediated human leukemia cell death: calcium influx-independent. Acta Biochim Biophys Sin Shanghai 41:362–369

    Article  PubMed  CAS  Google Scholar 

  169. Avanzato D, Genova T, Fiorio Pla A, et al. 2016 Activation of P2X7 and P2Y11 purinergic receptors inhibits migration and normalizes tumor-derived endothelial cells via cAMP signaling [published correction appears in Sci Rep. 2016 Nov 11;6:35897]. Sci Rep. 6:32602

  170. Schneider G, Glaser T, Lameu C, Abdelbaset-Ismail A, Sellers ZP, Moniuszko M, Ulrich H, Ratajczak MZ (2015) Extracellular nucleotides as novel, underappreciated pro-metastatic factors that stimulate purinergic signaling in human lung cancer cells. Mol Cancer 14:201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Gu LQ, Li FY, Zhao L, Liu Y, Chu Q, Zang XX, Liu JM, Ning G, Zhao YJ (2010) Association of XIAP and P2X7 receptor expression with lymph node metastasis in papillary thyroid carcinoma. Endocrine. 38:276–282

    Article  CAS  PubMed  Google Scholar 

  172. Falk S, Schwab SD, Frøsig-Jørgensen M, Clausen RP, Dickenson AH, Heegaard AM (2015) P2X7 receptor-mediated analgesia in cancer-induced bone pain. Neuroscience. 291:93–105

    Article  CAS  PubMed  Google Scholar 

  173. Slater M, Danieletto S, Gidley-Baird A, Teh LC, Barden JA (2004) Early prostate cancer detected using expression of non-functional cytolytic P2X7 receptors. Histopathology. 44:206–215

    Article  CAS  PubMed  Google Scholar 

  174. Loi S, Pommey S, Haibe-Kains B, Beavis PA, Darcy PK, Smyth MJ, Stagg J (2013) CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci U S A 110:11091–11096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by grants from the Natural Science Foundation of Jiangxi Province (20202BABL206163 and 20202BABL206091), the Graduate Student Innovation Fund Project of Jiangxi Province (YC2020-B047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-jun Zhang.

Ethics declarations

Competing of interests

Wen-jun Zhang declares that he/she has no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Wj. Effect of P2X purinergic receptors in tumor progression and as a potential target for anti-tumor therapy. Purinergic Signalling 17, 151–162 (2021). https://doi.org/10.1007/s11302-020-09761-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-020-09761-8

Keywords

Navigation