Skip to main content
Log in

Involvement of adenosine A1 and A2A receptors on guanosine-mediated anti-tremor effects in reserpinized mice

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) signs and symptoms regularly include tremor. Interestingly, the nucleoside guanosine (GUO) has already proven to be effective in reducing reserpine-induced tremulous jaw movements (TJMs) in rodent models, thus becoming a promising antiparkinsonian drug. Here, we aimed at revealing the mechanism behind GUO antiparkinsonian efficacy by assessing the role of adenosine A1 and A2A receptors (A1R and A2AR) on GUO-mediated anti-tremor effects in the reserpinized mouse model of PD. Reserpinized mice showed elevated reactive oxygen species (ROS) production and cellular membrane damage in striatal slices assessed ex vivo and GUO treatment reversed ROS production. Interestingly, while the simultaneous administration of sub-effective doses of GUO (5 mg/kg) and SCH58261 (0.01 mg/kg), an A2AR antagonist, precluded reserpine-induced TJMs, these were ineffective on reverting ROS production in ex vivo experiments. Importantly, GUO was able to reduce TJM and ROS production in reserpinized mouse lacking the A2AR, thus suggesting an A2AR-independent mechanism of GUO-mediated effects. Conversely, the administration of DPCPX (0.75 mg/kg), an A1R antagonist, completely abolished both GUO-mediated anti-tremor effects and blockade of ROS production. Overall, these results indicated that GUO anti-tremor and antioxidant effects in reserpinized mice were A1R dependent but A2AR independent, thus suggesting a differential participation of adenosine receptors in GUO-mediated effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hirsch EC, Mouatt A, Faucheux B, Bonnet AM, Javoy-Agid F, Graybiel AM, Agid Y (1992) Dopamine, tremor, and Parkinson’s disease. Lancet 340:125–126

    CAS  PubMed  Google Scholar 

  2. Deuschl G, Raethjen J, Baron R, Lindemann M, Wilms H, Krack P (2000) The pathophysiology of parkinsonian tremor: a review. J Neurol 247(Suppl 5):V33–V48

    PubMed  Google Scholar 

  3. Collins-Praino LE, Paul NE, Rychalsky KL, Hinman JR, Chrobak JJ, Senatus PB, Salamone JD (2011) Pharmacological and physiological characterization of the tremulous jaw movement model of parkinsonian tremor: potential insights into the pathophysiology of tremor. Front Syst Neurosci 5:49

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Salamone JD, Mayorga AJ, Trevitt JT, Cousins MS, Conlan A, Nawab A (1998) Tremulous jaw movements in rats: a model of parkinsonian tremor. Prog Neurobiol 56:591–611

    CAS  PubMed  Google Scholar 

  5. Duma SR, Fung VS (2019) Drug-induced movement disorders. Aust Prescr 42:56–61

    PubMed  PubMed Central  Google Scholar 

  6. Colpaert FC (1987) Pharmacological characteristics of tremor, rigidity and hypokinesia induced by reserpine in rat. Neuropharmacology 26:1431–1440

    CAS  PubMed  Google Scholar 

  7. Jiang S, Ballerini P, Buccella S, Giuliani P, Jiang C, Huang X, Rathbone MP (2008) Remyelination after chronic spinal cord injury is associated with proliferation of endogenous adult progenitor cells after systemic administration of guanosine. Purinergic Signal 4:61–71

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Schmidt AP, Lara DR, Souza DO (2007) Proposal of a guanine-based purinergic system in the mammalian central nervous system. Pharmacol Ther 116:401–416

    CAS  PubMed  Google Scholar 

  9. Lanznaster D, Mack JM, Coelho V, Ganzella M, Almeida RF, Dal-Cim T, Hansel G, Zimmer ER, Souza DO, Prediger RD, Tasca CI (2016) Guanosine prevents anhedonic-like behavior and impairment in hippocampal glutamate transport following amyloid-β1–40 administration in mice. Mol Neurobiol

  10. Lara DR, Schmidt AP, Frizzo ME, Burgos JS, Ramírez G, Souza DO (2001) Effect of orally administered guanosine on seizures and death induced by glutamatergic agents. Brain Res 912:176–180

    CAS  PubMed  Google Scholar 

  11. Schmidt AP, Böhmer AE, Schallenberger C, Antunes C, Tavares RG, Wofchuk ST, Elisabetsky E, Souza DO (2010) Mechanisms involved in the antinociception induced by systemic administration of guanosine in mice. Br J Pharmacol 159:1247–1263

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Almeida RF, Comasseto DD, Ramos DB, Hansel G, Zimmer ER, Loureiro SO, Ganzella M, Souza DO (2016) Guanosine anxiolytic-like effect involves adenosinergic and glutamatergic neurotransmitter systems. Mol Neurobiol

  13. Bettio LE, Freitas AE, Neis VB, Santos DB, Ribeiro CM, Rosa PB, Farina M, Rodrigues AL (2014) Guanosine prevents behavioral alterations in the forced swimming test and hippocampal oxidative damage induced by acute restraint stress. Pharmacol Biochem Behav 127:7–14

    CAS  PubMed  Google Scholar 

  14. Massari CM, López-Cano M, Núñez F, Fernández-Dueñas V, Tasca CI, Ciruela F (2017) Antiparkinsonian efficacy of guanosine in rodent models of movement disorder. Front Pharmacol 8:700

    PubMed  PubMed Central  Google Scholar 

  15. Marques NF, Massari CM, Tasca CI (2019) Guanosine protects striatal slices against 6-OHDA-induced oxidative damage, mitochondrial dysfunction, and ATP depletion. Neurotox Res 35:475–483

    CAS  PubMed  Google Scholar 

  16. Giuliani P, Ballerini P, Buccella S, Ciccarelli R, Rathbone MP, Romano S, D'Alimonte I, Caciagli F, Di Iorio P, Pokorski M (2015) Guanosine protects glial cells against 6-hydroxydopamine toxicity. Adv Exp Med Biol 837:23–33

    PubMed  Google Scholar 

  17. Giuliani P, Romano S, Ballerini P, Ciccarelli R, Petragnani N, Cicchitti S, Zuccarini M, Jiang S, Rathbone MP, Caciagli F, Di Iorio P (2012) Protective activity of guanosine in an in vitro model of Parkinson’s disease. Panminerva Med 54:43–51

    CAS  PubMed  Google Scholar 

  18. Dal-Cim T, Poluceno GG, Lanznaster D, de Oliveira KA, Nedel CB, Tasca CI (2019) Guanosine prevents oxidative damage and glutamate uptake impairment induced by oxygen/glucose deprivation in cortical astrocyte cultures: involvement of A. Purinergic Signal

  19. Dal-Cim T, Ludka FK, Martins WC, Reginato C, Parada E, Egea J, López MG, Tasca CI (2013) Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions. J Neurochem 126:437–450

    CAS  PubMed  Google Scholar 

  20. Yabe I, Kitagawa M, Takahashi I, Matsushima M, Sasaki H (2017) The efficacy of istradefylline for treating mild wearing-off in Parkinson disease. Clin Neuropharmacol 40:261–263

    CAS  PubMed  Google Scholar 

  21. Suzuki K, Miyamoto T, Miyamoto M, Uchiyama T, Hirata K (2018) Could istradefylline be a treatment option for postural abnormalities in mid-stage Parkinson's disease? J Neurol Sci 385:131–133

    CAS  PubMed  Google Scholar 

  22. T. M. Palmer and G. L. Stiles, "Adenosine receptors," Neuropharmacology, vol. 34, pp. 683–694, 1995

  23. Krügel U, Kittner H, Franke H, Illes P (2003) Purinergic modulation of neuronal activity in the mesolimbic dopaminergic system in vivo. Synapse 47:134–142

    PubMed  Google Scholar 

  24. Ferré S, Fuxe K, von Euler G, Johansson B, Fredholm BB (1992) Adenosine-dopamine interactions in the brain. Neuroscience 51:501–512

    PubMed  Google Scholar 

  25. Popoli P, Giménez-Llort L, Pezzola A, Reggio R, Martínez E, Fuxe K, Ferré S (1996) Adenosine A1 receptor blockade selectively potentiates the motor effects induced by dopamine D1 receptor stimulation in rodents. Neurosci Lett 218:209–213

    CAS  PubMed  Google Scholar 

  26. Fuxe K, Ferré S, Canals M, Torvinen M, Terasmaa A, Marcellino D, Goldberg SR, Staines W, Jacobsen KX, Lluis C, Woods AS, Agnati LF, Franco R (2005) Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J Mol Neurosci 26:209–220

    CAS  PubMed  Google Scholar 

  27. Fernández-Dueñas V, Gómez-Soler M, Valle-León M, Watanabe M, Ferrer I, Ciruela F (2019) Revealing adenosine A. Int J Mol Sci 20

  28. Ferré S, Ciruela F (2019) Functional and neuroprotective role of striatal adenosine a. J Caffeine Adenosine Res 9:89–97

    PubMed  PubMed Central  Google Scholar 

  29. Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF (1997) Special report: the 1996 guide for the care and use of laboratory animals. ILAR J 38:41–48

    PubMed  Google Scholar 

  30. Burger ME, Alves A, Callegari L, Athayde FR, Nogueira CW, Zeni G, Rocha JB (2003) Ebselen attenuates reserpine-induced orofacial dyskinesia and oxidative stress in rat striatum. Prog Neuro-Psychopharmacol Biol Psychiatry 27:135–140

    CAS  Google Scholar 

  31. Cunha AS, Matheus FC, Moretti M, Sampaio TB, Poli A, Santos DB, Colle D, Cunha MP, Blum-Silva CH, Sandjo LP, Reginatto FH, Rodrigues AL, Farina M, Prediger RD (2016) Agmatine attenuates reserpine-induced oral dyskinesia in mice: role of oxidative stress, nitric oxide and glutamate NMDA receptors. Behav Brain Res 312:64–76

    CAS  PubMed  Google Scholar 

  32. Collins LE, Galtieri DJ, Brennum LT, Sager TN, Hockemeyer J, Müller CE, Hinman JR, Chrobak JJ, Salamone JD (2010) Oral tremor induced by the muscarinic agonist pilocarpine is suppressed by the adenosine A2A antagonists MSX-3 and SCH58261, but not the adenosine A1 antagonist DPCPX. Pharmacol Biochem Behav 94:561–569

    CAS  PubMed  Google Scholar 

  33. Salamone J, Baskin P (1996) Vacuous jaw movements induced by acute reserpine and low-dose apomorphine: possible model of parkinsonian tremor. Pharmacol Biochem Behav 53:179–183

    CAS  PubMed  Google Scholar 

  34. Ludka FK, Cunha MP, Dal-Cim T, Binder LB, Constantino LC, Massari CM, Martins WC, Rodrigues AL, Tasca CI (2016) Atorvastatin protects from Aβ1–40-induced cell damage and depressive-like behavior via ProBDNF cleavage. Mol Neurobiol

  35. Ludka FK, Dal-Cim T, Binder LB, Constantino LC, Massari C, Tasca CI (2016) Atorvastatin and fluoxetine prevent oxidative stress and mitochondrial dysfunction evoked by glutamate toxicity in hippocampal slices. Mol Neurobiol

  36. Pinna A, Ko WK, Costa G, Tronci E, Fidalgo C, Simola N, Li Q, Tabrizi MA, Bezard E, Carta M, Morelli M (2016) Antidyskinetic effect of A2A and 5HT1A/1B receptor ligands in two animal models of Parkinson’s disease. Mov Disord 31:501–511

    CAS  PubMed  Google Scholar 

  37. Kondo T, Mizuno Y, J. I. S. Group (2015) A long-term study of istradefylline safety and efficacy in patients with Parkinson disease. Clin Neuropharmacol 38:41–46

    CAS  PubMed  Google Scholar 

  38. Gandía J, Morató X, Stagljar I, Fernández-Dueñas V, Ciruela F (2015) Adenosine A2A receptor-mediated control of pilocarpine-induced tremulous jaw movements is Parkinson’s disease-associated GPR37 receptor-dependent. Behav Brain Res 288:103–106

    PubMed  Google Scholar 

  39. Mayorga AJ, Carriero DL, Cousins MS, Gianutsos G, Salamone JD (1997) Tremulous jaw movements produced by acute tacrine administration: possible relation to parkinsonian side effects. Pharmacol Biochem Behav 56:273–279

    CAS  PubMed  Google Scholar 

  40. Mayorga AJ, Trevitt JT, Conlan A, Gianutsos G, Salamone JD (1999) Striatal and nigral D1 mechanisms involved in the antiparkinsonian effects of SKF 82958 (APB): studies of tremulous jaw movements in rats. Psychopharmacology (Berl) 143:72–81

    CAS  Google Scholar 

  41. Trevitt J, Kawa K, Jalali A, Larsen C (2009) Differential effects of adenosine antagonists in two models of parkinsonian tremor. Pharmacol Biochem Behav 94:24–29

    CAS  PubMed  Google Scholar 

  42. Carlson BB, Behrstock S, Tobin AJ, Salamone JD (2003) Brain implantations of engineered GABA-releasing cells suppress tremor in an animal model of Parkinsonism. Neuroscience 119:927–932

    CAS  PubMed  Google Scholar 

  43. Carlson BB, Wisniecki A, Salamone JD (2003) Local injections of the 5-hydroxytryptamine antagonist mianserin into substantia nigra pars reticulata block tremulous jaw movements in rats: studies with a putative model of Parkinsonian tremor. Psychopharmacology (Berl) 165:229–237

    CAS  Google Scholar 

  44. Ferré S, Bonaventura J, Tomasi D, Navarro G, Moreno E, Cortés A, Lluís C, Casadó V, Volkow ND (2016) Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer. Neuropharmacology 104:154–160

    PubMed  Google Scholar 

  45. Svenningsson P, Le Moine C, Kull B, Sunahara R, Bloch B, Fredholm BB (1997) Cellular expression of adenosine A2A receptor messenger RNA in the rat central nervous system with special reference to dopamine innervated areas. Neuroscience 80:1171–1185

    CAS  PubMed  Google Scholar 

  46. Dixon AK, Gubitz AK, Sirinathsinghji DJ, Richardson PJ, Freeman TC (1996) Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol 118:1461–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Salamone JD, Collins-Praino LE, Pardo M, Podurgiel SJ, Baqi Y, Müller CE, Schwarzschild MA, Correa M (2013) Conditional neural knockout of the adenosine A(2A) receptor and pharmacological A(2A) antagonism reduce pilocarpine-induced tremulous jaw movements: studies with a mouse model of parkinsonian tremor. Eur Neuropsychopharmacol 23:972–977

    CAS  PubMed  Google Scholar 

  48. Collins-Praino LE, Paul NE, Ledgard F, Podurgiel SJ, Kovner R, Baqi Y, Müller CE, Senatus PB, Salamone JD (2013) Deep brain stimulation of the subthalamic nucleus reverses oral tremor in pharmacological models of parkinsonism: interaction with the effects of adenosine A2A antagonism. Eur J Neurosci 38:2183–2191

    PubMed  Google Scholar 

  49. Ferré S, Popoli P, Giménez-Llort L, Finnman UB, Martínez E, Scotti de Carolis A, Fuxe K (1994) Postsynaptic antagonistic interaction between adenosine A1 and dopamine D1 receptors. Neuroreport 6:73–76

    PubMed  Google Scholar 

  50. Ferre S, Popoli P, Tinner-Staines B, Fuxe K (1996) Adenosine A1 receptor-dopamine D1 receptor interaction in the rat limbic system: modulation of dopamine D1 receptor antagonist binding sites. Neurosci Lett 208:109–112

    CAS  PubMed  Google Scholar 

  51. Ismayilova N, Crossman A, Verkhratsky A, Brotchie J (2004) Effects of adenosine A1, dopamine D1 and metabotropic glutamate 5 receptors-modulating agents on locomotion of the reserpinised rats. Eur J Pharmacol 497:187–195

    CAS  PubMed  Google Scholar 

  52. Missale C, Nisoli E, Liberini P, Rizzonelli P, Memo M, Buonamici M, Rossi A, Spano P (1989) Repeated reserpine administration up-regulates the transduction mechanisms of D1 receptors without changing the density of [3H]SCH 23390 binding. Brain Res 483:117–122

    CAS  PubMed  Google Scholar 

  53. Liberini P, Nisoli E, Missale C, Memo M, Buonamici M, Rossi A, Spano PF (1989) Differential effect of acute reserpine administration on D-1 and D-2 dopaminergic receptor density and function in rat striatum. Neurochem Int 14:61–64

    CAS  PubMed  Google Scholar 

  54. Meiser J, Weindl D, Hiller K (2013) Complexity of dopamine metabolism. Cell Commun Signal 11:34

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Teixeira AM, Reckziegel P, Müller L, Pereira RP, Roos DH, Rocha JB, Bürger ME (2009) Intense exercise potentiates oxidative stress in striatum of reserpine-treated animals. Pharmacol Biochem Behav 92:231–235

    CAS  PubMed  Google Scholar 

  56. Su C, Elfeki N, Ballerini P, D'Alimonte I, Bau C, Ciccarelli R, Caciagli F, Gabriele J, Jiang S (2009) Guanosine improves motor behavior, reduces apoptosis, and stimulates neurogenesis in rats with parkinsonism. J Neurosci Res 87:617–625

    CAS  PubMed  Google Scholar 

  57. Lanznaster D, Massari CM, Marková V, Šimková T, Duroux R, Jacobson KA, Fernández-Dueñas V, Tasca CI, Ciruela F (2019) Adenosine A. Cells 8

Download references

Funding

The research performed at the Universidade Federal de Santa Catarina was supported by the Brazilian funding agencies, CAPES (CAPES/PAJT), CNPq (INCT-EN for Excitotoxicity and Neuroprotection), and FAPESC (NENASC/PRONEX) to C.I.T. The research performed at the Universitat de Barcelona was supported by FEDER/Ministerio de Ciencia, Innovación y Universidades–Agencia Estatal de Investigación (SAF2017-87349-R) and ISCIII (PIE14/00034), the Catalan government (2017 SGR 1604), Fundació la Marató de TV3 (Grant 20152031), and FWO (SBO-140028) to F.C. Also, CAPES-PDSE (47/2017) provided doctoral fellowship to C.M.M. We thank LAMEB/UFSC team work for experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. I. Tasca.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Ethical approval

The study protocol was approved by the Ethical Committee on Animal Use and Care of the University of Barcelona (CEEA/UB) and Federal University of Santa Catarina (CEUA/UFSC, Protocol PP00955).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massari, C.M., Constantino, L.C., Marques, N.F. et al. Involvement of adenosine A1 and A2A receptors on guanosine-mediated anti-tremor effects in reserpinized mice. Purinergic Signalling 16, 379–387 (2020). https://doi.org/10.1007/s11302-020-09716-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-020-09716-z

Keywords

Navigation