Skip to main content

Advertisement

Log in

Mononuclear-cell-derived microparticles attenuate endothelial inflammation by transfer of miR-142-3p in a CD39 dependent manner

Purinergic Signalling Aims and scope Submit manuscript

Abstract

Plasma microparticles (MP) bear functional active ectonucleotidases of the CD39 family with implications in vascular inflammation. MP appear to be able to fuse with cells and transfer genetic information. Here, we tested whether levels of different immunomodulatory microRNAs (miRs) in plasma MP are modulated by CD39 after experimental hepatectomy. We further investigated whether horizontal transfer of miR-142-3p between mononuclear (MNC) and endothelial cells via MP is regulated by purinergic signaling. Partial hepatectomy was performed in C57BL/6 wild type and Cd39 null mice. MP were collected via ultracentrifugation. MNC were stimulated with nucleotides and nucleosides, in vitro, and tested for miR-142-3p levels. Fusion of MNC-derived MP and endothelial cells with subsequent transfer of miR-142-3p was imaged by flow cytometry and confocal microscopy. Endothelial inflammation and apoptosis were quantified after transfection with miR-142-3p. Significantly lower miR-142-3p levels were observed in plasma MP of Cd39 null mice after partial hepatectomy, when compared to C57BL/6 wild types (p < 0.05). In contrast to extracellular nucleotides, anti-inflammatory adenosine significantly increased miR-142-3p levels in MNC-derived MP, in vitro (p < 0.05). MNC-derived MP are able to transfer miR-142-3p to endothelial cells by fusion. Transfection of endothelial cells with miR-142-3p decreased TNF-α levels (p < 0.05) and endothelial apoptosis (p < 0.05). MiR-142-3p levels in MNC-derived MP are modulated by nucleoside signaling and might reflect compensatory responses in vascular inflammation. Our data suggest the transfer of genetic information via shed MP as a putative mechanism of intercellular communication—with implications in organ regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

ATP:

Adenosine triphosphate

ATPγS:

Adenosine 5′-O-(3-thio)triphosphate

BM-MNC:

Bone-marrow-derived mononuclear cells

BSA:

Bovine serum albumin

CD:

Cluster of differentiation

cel-miR-39:

miR-39-derived from nematode Caenorhabditis elegans

CPD:

Citrate phosphate dextrose

CSC:

8-(3-chlorostyryl) caffeine

DAPI:

4′,6-diamidino-2-phenylindole

DMSO:

Dimethyl sulfoxide

EDTA:

Ethylenediamine tetraacetic acid

E-NTPDase 1:

Ectonucleoside triphosphate diphosphohydrolase 1

FBS:

Fetal bovine serum

hAGO2:

Human argonaute 2

HSA:

Human serum albumin

HSC:

Hematopoietic stem cells;

HUVEC:

Human umbilical vein endothelial cells

LSEC:

Liver sinusoidal endothelial cells

MP:

Microparticles; miR

miRNA:

MicroRNA

PBS:

Phosphate buffered saline

PB-MNC:

Peripheral-blood-derived mononuclear cells

P-bodies:

Processing bodies

RNU6:

U6 small nuclear RNA

TGFβ:

Transforming growth factor beta 1

TNF-α:

Tumor necrosis factor alpha

XAC:

Xanthine amine congener

18S rRNA:

18S ribosomal RNA

References

  1. Fausto N, Campbell JS, Riehle KJ (2006) Liver regeneration. Hepatology 43:S45–S53

    Article  CAS  Google Scholar 

  2. Beldi G, Wu Y, Sun X, Imai M, Enjyoyi K, Csizmadia E, Candinas D, Erb L, Robson SC (2008) Regulated catalysis of extracellular nucleotides by vascular CD39/ENTPD1 is required for liver regeneration. Gastroenterology 135:1751–1760

    Article  CAS  Google Scholar 

  3. Gehling UM, Willems M, Dandri M, Petersen J, Berna M, Thill M, Wulf T, Müller L, Pollok JM, Schlagner K, Faltz C, Hossfeld DK, Rogiers X (2005) Partial hepatectomy induces mobilization of a unique population of haematopoietic progenitor cells in human healthy liver donors. J Hepatol 43:845–883

    Article  CAS  Google Scholar 

  4. Harb R, Xie G, Lutzko C, Guo Y, Wang X, Hill CK, Kanel GC, DeLeve LD (2009) Bone marrow progenitor cells repair rat hepatic sinusoidal endothelial cells after liver injury. Gastroenterology 137:704–712

    Article  Google Scholar 

  5. Levine P, McDaniel K, Francis H, Kennedy L, Alpini G, Meng F (2014) Molecular mechanisms of stem cell therapy in alcoholic liver disease. Dig Liver Dis 46:391–397

    Article  CAS  Google Scholar 

  6. Schmelzle M, Duhme C, Junger W, Salhanick SD, Chen Y, Wu Y, Toxavidis V, Csizmadia E, Han L, Bian S, Fürst G, Nowak M, Karp SJ, Knoefel WT, Schulte am Esch J, Robson SC (2012) CD39 modulates hematopoietic stem cell recruitment and promotes liver regeneration in mice and humans after partial hepatectomy. Ann Surg 257:693–701

    Article  Google Scholar 

  7. Schulte am Esch J, Knoefel WT, Klein M, Ghodsizad A, Fuerst G, Poll LW, Piechaczek C, Burchardt ER, Feifel N, Stoldt V, Stockschläder M, Stoecklein N, Tustas RY, Eisenberger CF, Peiper M, Häussinger D, Hosch SB (2005) Portal application of autologous CD133+ bone marrow derived stem cells to the liver: a novel concept to support hepatic regeneration. Stem Cells 2:463–470

    Article  Google Scholar 

  8. Fürst G, Schulte am Esch J, Poll LW, Hosch SB, Fritz B, Klein M, Godehardt E, Krieg A, Wecker B, Stoldt V, Stockschläder M, Eisenberger CF, Mödder U, Knoefel WT (2007) Portal vein embolization and autologous CD133+ bone marrow stem cells for liver regeneration: initial experience. Radiology 243:171–179

    Article  Google Scholar 

  9. Schulte am Esch J, Schmelzle M, Fürst G, Robson SC, Krieg A, Duhme C, Tustas RY, Alexander A, Klein HM, Topp SA, Bode JG, Häussinger D, Eisenberger CF, Knoefel WT (2012) Infusion of CD133+ bone marrow-derived stem cells after selective portal vein embolization enhances hepatic reserves after extended right hepatectomy. Ann Surg 255:79–85

    Article  Google Scholar 

  10. Schmelzle M, Splith K, Andersen LW, Kornek M, Schuppan D, Jones-Bamman C, Nowak M, Toxavidis V, Salhanick SD, Han L, Schulte am Esch J, Jonas S, Donnino MW, Robson SC (2013) Increased plasma levels of microparticles expressing CD39 and CD133 in acute liver injury. Transplantation 95:63–69

    Article  CAS  Google Scholar 

  11. Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, Touyz RM (2013) Microparticles: biomarkers and beyond. Clin Sci 124:423–441

    Article  CAS  Google Scholar 

  12. Hugel B, Martinez MC, Kunzelmann C, Freyssinet JM (2005) Membrane microparticles: two sides of the coin. Physiology 20:22–27

    Article  CAS  Google Scholar 

  13. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265

    Article  CAS  Google Scholar 

  14. Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430

    Article  CAS  Google Scholar 

  15. Crumm S, Cofan M, Juskeviciute E, Hoek JB (2008) Adenine nucleotide changes in the remnant liver: an early signal for regeneration after partial hepatectomy. Hepatology 48:898–908

    Article  CAS  Google Scholar 

  16. Gonzales E, Julien B, Serrière-Lanneau V, Nicou A, Doignon I, Lagoudakis L, Garcin I, Azoulay D, Duclos-Vallée JC, Castaing D, Samuel D, Hernandez-Garcia A, Awad SS, Combettes L, Thevananther S, Tordjmann T (2010) ATP release after partial hepatectomy regulates liver regeneration in the rat. J Hepatol 52:54–62

    Article  CAS  Google Scholar 

  17. Banz Y, Beldi G, Wu Y, Atkinson B, Usheva A, Robson SC (2008) CD39 is incorporated into plasma microparticles where it maintains functional properties and impacts endothelial activation. Br J Haematol 142:627–637

    Article  CAS  Google Scholar 

  18. Kornek M, Popov Y, Libermann TA, Afdhal NH, Schuppan D (2011) Human T cell microparticles circulate in blood of hepatitis patients and induce fibrolytic activation of hepatic stellate cells. Hepatology 53:230–242

    Article  CAS  Google Scholar 

  19. Fonsato V, Collino F, Herrera MB, Cavallari C, Deregibus MC, Cisterna B, Bruno S, Romagnoli R, Salizzoni M, Tetta C, Camussi G (2012) Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells 30:1985–1998

    Article  CAS  Google Scholar 

  20. Herrera MB, Fonsato V, Gatti S, Deregibus MC, Sordi A, Cantarella D, Calogero R, Bussolati B, Tetta C, Camussi G (2010) Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med 14:1605–1618

    Article  CAS  Google Scholar 

  21. Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L, Tetta C, Camussi G (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 5:e11803. https://doi.org/10.1371/journal.pone.0011803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Camus SM, De Moraes JA, Bonnin P, Abbyad P, Le Jeune S, Lionnet F, Loufrani L, Grimaud L, Lambry JC, Charue D, Kiger L, Renard JM, Larroque C, Le Clésiau H, Tedgui A, Bruneval P, Barja-Fidalgo C, Alexandrou A, Tharaux PL, Boulanger CM, Blanc-Brude OP (2015) Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasco-occlusions in sickle cell disease. Blood 125:3805–3814

    Article  CAS  Google Scholar 

  23. Das S, Halushka MK (2015) Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovasc Pathol 24:199–206

    Article  CAS  Google Scholar 

  24. Duchez AC, Boudreau LH, Naika GS, Bollinger J, Belleannée C, Cloutier N, Laffont B, Mendoza-Villarroel RE, Lévesque T, Rollet-Labelle E, Rousseau M, Allaeys I, Tremblay JJ, Poubelle PE, Lambeau G, Pouliot M, Provost P, Soulet D, Gelb MH, Boilard E (2015) Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA. Proc Natl Acad Sci U S A 112:E3564–E3573

    Article  CAS  Google Scholar 

  25. Fernandez-Messina L, Gutierrez-Vazquez C, Rivas-Garcia E, Sanchez-Madrid F, de la Fuente H (2015) Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol Cell 107:61–77

    Article  CAS  Google Scholar 

  26. Beninson LA, Fleshner M (2014) Exosomes: an emerging factor in stress-induced immunomodulation. Semin Immunol 26:394–401

    Article  CAS  Google Scholar 

  27. Bissels U, Wild S, Tomiuk S, Hafner M, Scheel H, Mihailovic A, Choi YH, Tuschl T, Bosio A (2011) Combined characterization of microRNA and mRNA profiles delineates early differentiation pathways of CD133+ hematopoietic stem and progenitor cells. Stem Cells 29:847–857

    Article  CAS  Google Scholar 

  28. Chai S, Tong M, Ng KY, Kwan PS, Chan YP, Fung TM, Lee TKW, Wong N, Xie D, Yuan YF, Guan X-Y, Ma S (2014) Regulatory role of miR-142-3p on the functional hepatic cancer stem cell marker CD133. Oncotarget 5:5725–5735

    PubMed  PubMed Central  Google Scholar 

  29. Huang B, Zhao J, Lei Z, Shen S, Li D, Shen GX, Zhang GM, Feng ZH (2009) MiR-142-3p restricts cAMP production in CD4+CD25- T cells and CD4+CD25+ TREG cells by targeting AC9 mRNA. EMBO Rep 10:180–185

    Article  CAS  Google Scholar 

  30. Kim K, Yang DK, Kim S, Kang H (2015) MiR-142-3p is a regulator of the TGFβ-mediated vascular smooth muscle cell phenotype. J Cell Biochem 116(10):2325–2333

    Article  CAS  Google Scholar 

  31. Fordham JB, Naqvi AR, Nares S (2015) Regulation of miR-24, miR-30b, and miR-142-3p during macrophage and dendritic cell differentiation potentiates innate immunity. J Leukoc Biol 98(2):195–207

    Article  CAS  Google Scholar 

  32. Danger R, Pallier A, Giral M, Martínez-Llordella M, Lozano JJ, Degauque N, Sanchez-Fueyo A, Soulillou JP, Brouard S (2012) Upregulation of miR-142-3p in peripheral blood mononuclear cells of operationally tolerant patients with renal transplant. J Am Soc Nephrol 23:597–606

    Article  CAS  Google Scholar 

  33. Makino K, Jinnin M, Kajihara I, Honda N, Sakai K, Masuguchi S, Fukushima S, Ihn H (2011) Circulating miR-142-3p levels in patients with systemic sclerosis. Clin Exp Dermatol 37:34–39

    Article  Google Scholar 

  34. Enjyoji K, Sévigny J, Lin Y, Frenette PS, Christie PD, Schulte am Esch J, Imai M, Edelberg JM, Rayburn H, Lech M, Beeler DL, Csizmadia E, Wagner DD, Robson SC, Rosenberg RD (1999) Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med 5:1010–101.7

    Article  CAS  Google Scholar 

  35. Aucher A, Rudnicka D, Davis DM (2013) MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation. J Immunol 191:6250–6260

    Article  CAS  Google Scholar 

  36. van der Vlist EJ, Nolte-‘t Hoen ENM, Stoorvogel W, Arkesteijn GJA, Wauben MHM (2012) Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc 7:1311–1326

    Article  Google Scholar 

  37. Bale SS, Golberg I, Jindal R, McCarty WJ, Luitje M, Hedge M, Bhushan A, Usta OB, Yarmush ML (2014) Long-term coculture strategies for primary hepatocytes and liver sinusoidal endothelial cells. Tissue Eng Part C Methods 21:413–422

    Article  Google Scholar 

  38. Greene AK, Wiener S, Puder M, Yoshida A, Shi B, Perez-Atayde AR, Efstathiou JA, Holmgren L, Adamis AP, Rupnick M, Folkman J, O'Reilly MS (2003) Endothelial-directed hepatic regeneration after partial hepatectomy. Ann Surg 237:530–535

    PubMed  PubMed Central  Google Scholar 

  39. Sun X, Han L, Seth P, Bian S, Li L, Csizmadia E, Junger WG, Schmelzle M, Usheva A, Tapper EB, Baffy G, Sukhatme VP, Wu Y, Robson SC (2003) Disordered purinergic signaling and abnormal cellular metabolism are associated with development of liver cancer in Cd39/Entpd1 null mice. Hepatology 57:205–216

    Article  Google Scholar 

  40. Lopatina T, Deregibus MC, Cantaluppi V, Camussi G (2012) Stem cell-derived microvesicles: a cell free therapy approach to the regenerative medicine. Curr Biotechnol 1:11–22

    Article  CAS  Google Scholar 

  41. Lee Y, Andaloussi SE, Wood MJA (2012) Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 21:R125–R134

    Article  CAS  Google Scholar 

  42. Leung AKL, Sharp PA (2006) Function and localization of microRNAs in mammalian cells. Cold Spring Harb Symp Quant Biol 71:29–38

    Article  CAS  Google Scholar 

  43. Detzer A, Engel C, Wünsche W, Sczakiel G (2011) Cell stress is related to re-localization of Argonaute 2 and to decreased RNA interference in human cells. Nucleic Acids Res 39:2727–2741

    Article  CAS  Google Scholar 

  44. Asirvatham AJ, Magner WJ, Tomasi TB (2009) MiRNA regulation of cytokine genes. Cytokine 45:58–69

    Article  CAS  Google Scholar 

  45. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  CAS  Google Scholar 

  46. Xu S, Wei J, Wang F, Kong LY, Ling XY, Nduom E, Gabrusiewicz K, Doucette T, Yang Y, Yaghi NK, Fajt V, Levine JM, Qiao W, Li XG, Lang FF, Rao G, Fuller GN, Calin GA, Heimberger AB (2014) Effect of miR-142-3p on the macrophage and therapeutic efficacy against murine glioblastoma. J Natl Cancer Inst 106(8):dju162

    Article  Google Scholar 

  47. Chakraborty JB, Oakley F, Walsh MJ (2012) Mechanisms and biomarkers of apoptosis in liver disease and fibrosis. Int J Hepatol 2012:648915

Download references

Acknowledgments

This work was presented in part at The Liver Meeting®, the 65th Annual Meeting of the AASLD in Boston, MA, USA (2014). The abstract “Plasma microparticles modulate vascular inflammation and liver regeneration via ectonucleotidase-dependent levels of miR-142-3p” was selected as a Presidential Poster of Distinction and was in the top 10% off all abstracts accepted for poster presentation.

Funding

The project was funded by the German Ministry of Education and Research (BMBF 1315883) and the Deutsche Forschungsgemeinschaft (DFG 2661/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Schmelzle.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Electronic supplementary material

ESM 1

(PDF 634 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuhn, S., Splith, K., Ballschuh, C. et al. Mononuclear-cell-derived microparticles attenuate endothelial inflammation by transfer of miR-142-3p in a CD39 dependent manner. Purinergic Signalling 14, 423–432 (2018). https://doi.org/10.1007/s11302-018-9624-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-018-9624-5

Keywords

Navigation