Skip to main content

Advertisement

Log in

Silencing of P2X7R by RNA interference in the hippocampus can attenuate morphological and behavioral impact of pilocarpine-induced epilepsy

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Cell signaling mediated by P2X7 receptors (P2X7R) has been suggested to be involved in epileptogenesis, via modulation of intracellular calcium levels, excitotoxicity, activation of inflammatory cascades, and cell death, among other mechanisms. These processes have been described to be involved in pilocarpine-induced status epilepticus (SE) and contribute to hyperexcitability, resulting in spontaneous and recurrent seizures. Here, we aimed to investigate the role of P2X7R in epileptogenesis in vivo using RNA interference (RNAi) to inhibit the expression of this receptor. Small interfering RNA (siRNA) targeting P2X7R mRNA was injected into the lateral ventricles (icv) 6 h after SE. Four groups were studied: Saline-Vehicle, Saline-siRNA, Pilo-Vehicle, and Pilo-siRNA. P2X7R was quantified by western blotting and neuronal death assessed by Fluoro-Jade B histochemistry. The hippocampal volume (edema) was determined 48 h following RNAi. Behavioral parameters as latency to the appearance of spontaneous seizures and the number of seizures were determined until 60 days after the SE onset. The Saline-siRNA and Pilo-siRNA groups showed a 43 and 37% reduction, respectively, in P2X7R protein levels compared to respective vehicle groups. Neuroprotection was observed in CA1 and CA3 of the Pilo-siRNA group compared to Pilo-Vehicle. P2X7R silencing in pilocarpine group reversed the increase in the edema detected in the hilus, suprapyramidal dentate gyrus, CA1, and CA3; reduced mortality rate following SE; increased the time to onset of spontaneous seizure; and reduced the number of seizures, when compared to the Pilo-Vehicle group. Therefore, our data highlights the potential of P2X7R as a therapeutic target for the adjunct treatment of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Engel J (2001) A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE task force on classification and terminology. Epilepsia 42(6):796–803

    Article  PubMed  Google Scholar 

  2. Babb TL, Kupfer WR, Pretorius JK, Crandall PH, Levesque MF (1991) Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience 42(2):351–363

    Article  CAS  PubMed  Google Scholar 

  3. Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, Bernasconi N, Bien CG, Cendes F, Coras R, Cross JH, Jacques TS, Kahane P, Mathern GW, Miyata H, Moshé SL, Oz B, Özkara Ç, Perucca E, Sisodiya S, Wiebe S, Spreafico R (2013) International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods. Epilepsia 54(7):1315–1329. doi:10.1111/epi.12220

    Article  PubMed  Google Scholar 

  4. Leite JP, Bortolotto ZA, Cavalheiro EA (1990) Spontaneous recurrent seizures in rats: an experimental model of partial epilepsy. Neurosci Biobehav Rev 14(4):511–517

    Article  CAS  PubMed  Google Scholar 

  5. Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L (1983) Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res 9(3):315–335

    Article  CAS  PubMed  Google Scholar 

  6. Vezzani A (2014) Epilepsy and inflammation in the brain: overview and pathophysiology. Epilepsy Curr 14(1):3–7. doi:10.5698/1535-7511-14.s2.3

    Article  PubMed  PubMed Central  Google Scholar 

  7. Beamer E, Gölöncsér F, Horváth G, Bekő K, Otrokocsi L, Koványi B, Sperlágh B (2016) Purinergic mechanisms in neuroinflammation: an update from molecules to behavior. Neuropharmacology 104:94–104. doi:10.1016/j.neuropharm.2015.09.019

    Article  CAS  PubMed  Google Scholar 

  8. Bernardino L, Balosso S, Ravizza T, Marchi N, Ku G, Randle JC, Malva JO, Vezzani A (2008) Inflammatory events in hippocampal slice cultures prime neuronal susceptibility to excitotoxic injury: a crucial role of P2X7 receptor-mediated IL-1β release. J Neurochem 106:271–280

    Article  CAS  PubMed  Google Scholar 

  9. Burnstock G, Krügel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95(2):229–274. doi:10.1016/j.pneurobio.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  10. Chakfe Y, Seguin R, Antel JP, Morissette C, Malo D, Henderson D, Séguéla P (2002) ADP and AMP induce interleukin-1β release from microglial cells through activation of ATP-primed P2X7 receptor channels. J Neurosci 22(8):3061–3069

    PubMed  Google Scholar 

  11. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36(3):174–184. doi:10.1016/j.tins.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  12. Doná F, Ulrich H, Persike DS, Conceição IM, Blini JP, Cavalheiro EA, Fernandes MJ (2009) Alteration of purinergic P2X4 and P2X7 receptor expression in rats with temporal-lobe epilepsy induced by pilocarpine. Epilepsy Res 83(2–3):157–167. doi:10.1016/j.eplepsyres.2008.10.008

    Article  PubMed  Google Scholar 

  13. Engel T, Alves M, Sheedy C, Henshall DC (2016) ATPergic signalling during seizures and epilepsy. Neuropharmacology 104:140–153. doi:10.1016/j.neuropharm.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  14. Henshall DC, Engel T (2015) P2X purinoceptors as a link between hyperexcitability and neuroinflammation in status epilepticus. Epilepsy Behav 49:8–12. doi:10.1016/j.yebeh.2015.02.031

    Article  PubMed  Google Scholar 

  15. Jimenez-Pacheco A, Diaz-Hernandez M, Arribas-Blázquez M, Sanz-Rodriguez A, Olivos-Oré LA, Artalejo AR, Alves M, Letavic M, Miras-Portugal MT, Conroy RM, Delanty N, Farrell MA, O'Brien DF, Bhattacharya A, Engel T, Henshall DC (2016) Transient P2X7 receptor antagonism produces lasting reductions in spontaneous seizures and gliosis in experimental temporal lobe epilepsy. J Neurosci 36(22):5920–5932. doi:10.1523/JNEUROSCI.4009-15.2016

    Article  CAS  PubMed  Google Scholar 

  16. Monif M, Reid CA, Powell KL, Smart ML, Williams DA (2009) The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. J Neurosci 29(12):3781–3791. doi:10.1523/JNEUROSCI.5512-08.2009

    Article  CAS  PubMed  Google Scholar 

  17. Monif M, Burnstock G, Williams DA (2010) Microglia: proliferation and activation driven by the P2X7 receptor. Int J Biochem Cell Biol 42(11):1753–1756. doi:10.1016/j.biocel.2010.06.021

    Article  CAS  PubMed  Google Scholar 

  18. Skaper SD, Debetto P, Giusti P (2010) The P2X7 purinergic receptor: from physiology to neurological disorders. FASEB J 24(2):337–345. doi:10.1096/fj.09-138883

    Article  CAS  PubMed  Google Scholar 

  19. Engel T, Jimenez-Pacheco A, Miras-Portugal MT, Diaz-Hernandez M, Henshall DC (2012) P2X7 receptor in epilepsy; role in pathophysiology and potential targeting for seizure control. Int J Physiol Pathophysiol Pharmacol 4(4):174–187

    CAS  PubMed  PubMed Central  Google Scholar 

  20. North RA, Jarvis MF (2013) P2X receptors as drug targets. Mol Pharmacol 83(4):759–769. doi:10.1124/mol.112.083758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miller CM, Boulter NR, Fuller SJ, Zakrzewski AM, Lees MP, Saunders BM, Wiley JS, Smith NC (2011) The role of the P2X7 receptor in infectious diseases. PLoS Pathog 7(11):1–7. doi:10.1371/journal.ppat.1002212

    Article  Google Scholar 

  22. Papp L, Vizi ES, Sperlágh B (2004) Lack of ATP-evoked GABA and glutamate release in the hippocampus of P2X7 receptor−/− mice. Neuroreport 15(15):2387–2391

    Article  CAS  PubMed  Google Scholar 

  23. Sperlágh B, Köfalvi A, Deuchars J, Atkinson L, Milligan CJ, Buckley NJ, Vizi ES (2002) Involvement of P2X7 receptors in the regulation of neurotransmitter release in the rat hippocampus. J Neurochem 81(6):1196–1211

    Article  PubMed  Google Scholar 

  24. Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396. doi:10.1016/j.pain.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  25. Sperlágh B, Vizi ES, Wirkner K, Illes P (2006) P2X7 receptors in the nervous system. Prog Neurobiol 78:327–346. doi:10.1016/j.pneurobio.2006.03.007

    Article  PubMed  Google Scholar 

  26. Peng W, Cotrina ML, Han X, Yu H, Bekar L, Blum L, Takano T, Tian GF, Goldman SA, Nedergaard M (2009) Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci U S A 106:12489–12493. doi:10.1073/pnas.0902531106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arbeloa J, Perez-Samartin A, Gottlieb M, Matute C (2012) P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiol Dis 45:954–961. doi:10.1016/j.nbd.2011.12.014

    Article  CAS  PubMed  Google Scholar 

  28. Melani A, Amadio S, Gianfriddo M, Vannucchi MG, Volonte C, Bernardi G, Pedata F, Sancesario G (2006) P2X7 receptor modulation on microglial cells and reduction of brain infarct caused by middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab 26:974–982. doi:10.1038/sj.jcbfm.9600250

    Article  CAS  PubMed  Google Scholar 

  29. Kimbler DE, Shields J, Yanasak N, Vender JR, Dhandapani KM (2012) Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice. PLoS One 7(7):e41229. doi:10.1371/journal.pone.0041229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Diaz-Hernandez JI, Gomez-Villafuertes R, Leon-Otegui M, Hontecillas-Prieto L, Del Puerto A, Trejo JL, Lucas JJ, Garrido JJ, Gualix J, Miras-Portugal MT, Diaz-Hernandez M (2012) In vivo P2X7 inhibition reduces amyloid plaques in Alzheimer’s disease through GSK3beta and secretases. Neurobiol Aging 33(8):1816–1828. doi:10.1016/j.neurobiolaging.2011.09.040

    Article  CAS  PubMed  Google Scholar 

  31. Diaz-Hernandez M, Diez-Zaera M, Sanchez-Nogueiro J, Gomez-Villafuertes R, Canals JM, Alberch J, Miras-Portugal MT, Lucas JJ (2009) Altered P2X7-receptor level and function in mouse models of Huntington’s disease and therapeutic efficacy of antagonist administration. FASEB J 23(6):1893–1906. doi:10.1096/fj.08-122275

    Article  CAS  PubMed  Google Scholar 

  32. Burnstock G (2013) Purinergic mechanisms and pain—an update. Eur J Pharmacol 716(1–3):24–40. doi:10.1016/j.ejphar.2013.01.078

    Article  CAS  PubMed  Google Scholar 

  33. Henshall DC, Diaz-Hernandez M, Miras-Portugal MT, Engel T (2013) P2X receptors as targets for the treatment of status epilepticus. Front Cell Neurosci 7:237. doi:10.3389/fncel.2013.00237

    PubMed  PubMed Central  Google Scholar 

  34. Fernandes MS, Speciali DS, Blini J, Canzian M, Cavalheiro EA, Ulrich H, Carrete H Jr, Centeno RS, Yacubian EM (2009) Purinergic P2 receptors are up-regulated in the hippocampus of patients with temporal lobe epilepsy associated with hippocampal sclerosis. Epilepsia 50(10):78

    Google Scholar 

  35. Padrão RA, Ariza CB, Canzian M, Porcionatto M, Araújo MGL, Cavalheiro EA, Ulrich H, Carrete H Jr, Centeno RS, Yacubian EM, Fernandes MS (2011) The P2 purinergic receptors are increased in the hippocampus of patients with temporal lobe epilepsy: what is the relevance to the epileptogenesis? Purinergic Signal 7:127

    Google Scholar 

  36. Rappold PM, Lynd-Balta E, Joseph SA (2006) P2X7 receptor immunoreactive profile confined to resting and activated microglia in the epileptic brain. Brain Res 1089:171–178. doi:10.1016/j.brainres.2006.03.040

    Article  CAS  PubMed  Google Scholar 

  37. Vianna EP, Ferreira AT, Naffah-Mazzacoratti MG, Sanabria ER, Funke M, Cavalheiro EA, Fernandes MJ (2002) Evidence that ATP participates in the pathophysiology of pilocarpine-induced temporal lobe epilepsy: afluorimetric, immunohistochemical, and western blot studies. Epilepsia 43(5):227–229

    Article  CAS  PubMed  Google Scholar 

  38. Choi HK, Ryu HJ, Kim JE, Jo SM, Choi HC, Song HK, Kang TC (2012) The roles of P2X7 receptor in regional-specific microglial responses in the rat brain following status epilepticus. Neurol Sci 33(3):515–525. doi:10.1007/s10072-011-0740-z

    Article  PubMed  Google Scholar 

  39. Kim JE, Ryu HJ, Kang TC (2011) P2X7 receptor activation ameliorates CA3 neuronal damage via a tumor necrosis factor-α-mediated pathway in the rat hippocampus following status epilepticus. J Neuroinflammation 8:62. doi:10.1186/1742-2094-8-62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim JE, Ryu HJ, Yeo SI, Kang TC (2011) P2X7 receptor differentially modulates astroglial apoptosis and clasmatodendrosis in the rat brain following status epilepticus. Hippocampus 21(12):1318–1333. doi:10.1002/hipo.20850

    Article  CAS  PubMed  Google Scholar 

  41. Engel T, Gomez-Villafuertes R, Tanaka K, Mesuret G, Sanz-Rodriguez A, Garcia-Huerta P, Miras-Portugal MT, Henshall DC, Diaz-Hernandez M (2012) Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice. FASEB J 26(4):1616–1628. doi:10.1096/fj.11-196089

    Article  CAS  PubMed  Google Scholar 

  42. Jimenez-Pacheco A, Mesuret G, Sanz-Rodriguez A, Tanaka K, Mooney C, Conroy R, Miras-Portugal MT, Diaz-Hernandez M, Henshall DC, Engel T (2013) Increased neocortical expression of the P2X7 receptor after status epilepticus and anticonvulsant effect of P2X7 receptor antagonist A-438079. Epilepsia 54(9):1551–1561. doi:10.1111/epi.12257

    Article  CAS  PubMed  Google Scholar 

  43. Kim JE, Kwak SE, Jo SM, Kang TC (2009) Blockade of P2X receptor prevents astroglial death in the dentate gyrus following pilocarpine-induced status epilepticus. Neurol Res 31(9):982–988. doi:10.1179/174313209X389811

    Article  CAS  PubMed  Google Scholar 

  44. Kim JE, Ryu HJ, Yeo SI, Kang TC (2010) P2X7 receptor regulates leukocyte infiltrations in rat fronto-parietal cortex following status epilepticus. J Neuroinflammation 7:65. doi:10.1186/1742-2094-7-65

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kim JE, Kang TC (2011) The P2X7 receptor-pannexin-1 complex decreases muscarinic acetylcholine receptor-mediated seizure susceptibility in mice. J Clin Investig 121(5):2037–2047. doi:10.1172/JCI44818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, Griffiths RJ, Gabel CA (2001) Altered cytokine production in mice lacking P2X7 receptors. J Biol Chem 276:125–132. doi:10.1074/jbc.M006781200

    Article  CAS  PubMed  Google Scholar 

  47. de França NR, Júnior DM, Lima AB, Pucci FVC, Andrade LEC, Silva NP (2010) Interferência por RNA: uma nova alternativa para terapia nas doenças reumáticas. Rev Bras Reumatol 50(6):695–702. doi:10.1590/S0482-50042010000600008

    Article  PubMed  Google Scholar 

  48. Basel Declaration Society (2011) The Basel Declaration. http://www.basel-declaration.org

  49. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordenates, 6th edn. Elsevier, London, p 462

    Google Scholar 

  50. Cavalheiro EA (1995) The pilocarpine model of epilepsy. Ital J Neurol Sci 16(1–2):33–37

    Article  CAS  PubMed  Google Scholar 

  51. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498. doi:10.1038/35078107

    Article  CAS  PubMed  Google Scholar 

  52. Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, Lee SK, Shankar P, Manjunath N (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448(7149):39–43. doi:10.1038/nature05901

    Article  CAS  PubMed  Google Scholar 

  53. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  54. Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874(2):123–130

    Article  CAS  PubMed  Google Scholar 

  55. Snyder JS, Ferrante SC, Cameron HA (2012) Late maturation of adult-born neurons in the temporal dentate gyrus. PLoS One 7(11):1–8. doi:10.1371/journal.pone.0048757

    Article  Google Scholar 

  56. Racine RJ (1972) Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr Clin Neurophysiol 32(3):281–294

    Article  CAS  PubMed  Google Scholar 

  57. Ferrari D, Wesselborg S, Bauer MK, Schulze-Osthoff K (1997) Extracellular ATP activates transcription factor NF-κB through the P2Z purinoreceptor by selectively targeting NF-κB p65. J Cell Biol 139(7):1635–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Duan S, Anderson CM, Keung EC, Chen Y, Chen Y, Swanson RA (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23(4):1320–1328

    CAS  PubMed  Google Scholar 

  59. Scorza FA, Arida RM, Naffah-Mazzacoratti Mda G, Scerni DA, Calderazzo L, Cavalheiro EA (2009) The pilocarpine model of epilepsy: what have we learned? An Acad Bras Cienc 81(3):345–365

    Article  CAS  PubMed  Google Scholar 

  60. Cavalheiro EA, Leite JP, Bortolotto ZA, Turski WA, Ikonomidou C, Turski L (1991) Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 32(6):778–782

    Article  CAS  PubMed  Google Scholar 

  61. Fabene PF, Andrioli A, Priel MR, Cavalheiro EA, Bentivoglio M (2004) Fos induction and persistence, neurodegeneration, and interneuron activation in the hippocampus of epilepsy-resistant versus epilepsy-prone rats after pilocarpine-induced seizures. Hippocampus 14(7):895–907. doi:10.1002/hipo.20003

    Article  PubMed  Google Scholar 

  62. Rosim FE, Persike DS, Nehlig A, Amorim RP, de Oliveira DM, Fernandes MJ (2011) Differential neuroprotection by A1 receptor activation and A2A receptor inhibition following pilocarpine-induced status epilepticus. Epilepsy Behav 22(2):207–213. doi:10.1016/j.yebeh.2011.07.004

    Article  PubMed  Google Scholar 

  63. Kim JE, Ryu HJ, Kang TC (2013) Status epilepticus induces vasogenic edema via tumor necrosis factor-α/ endothelin-1-mediated two different pathways. PLoS One 8(9):1–13. doi:10.1371/journal.pone.0074458

    CAS  Google Scholar 

  64. Lassmann H, Petsche U, Kitz K, Baran H, Sperk G, Seitelberger F, Hornykiewicz O (1984) The role of brain edema in epileptic brain damage induced by systemic kainic acid injection. Neuroscience 13(3):691–704

    Article  CAS  PubMed  Google Scholar 

  65. Wang Y, Liu PP, Li LY, Zhang HM, Li T (2011) Hypothermia reduces brain edema, spontaneous recurrent seizure attack, and learning memory deficits in the kainic acid treated rats. CNS Neurosci Ther 17(5):271–280. doi:10.1111/j.1755-5949.2010.00168.x

    Article  CAS  PubMed  Google Scholar 

  66. Arrigoni E, Averet N, Loiseau H, Cohadon F (1987) Relationship between epileptic activity and edema formation in the acute phase of cryogenic lesion. Neurochem Pathol 7:207–220

    CAS  PubMed  Google Scholar 

  67. Choy M, Cheung KK, Thomas DL, Gadian DG, Lythgoe MF, Scott RC (2010) Quantitative MRI predicts status epilepticus-induced hippocampal injury in the lithium–pilocarpine rat model. Epilepsy Res 88(2–3):221–230. doi:10.1016/j.eplepsyres.2009.11.013

    Article  PubMed  Google Scholar 

  68. Duffy BA, Chun KP, Ma D, Lythgoe MF, Scott RC (2014) Dexamethasone exacerbates cerebral edema and brain injury following lithium-pilocarpine induced status epilepticus. Neurobiol Dis 63(100):229–236. doi:10.1016/j.nbd.2013.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Roch C, Leroy C, Nehlig A, Namer IJ (2002) Magnetic resonance imaging in the study of the lithium–pilocarpine model of temporal lobe epilepsy in adult rats. Epilepsia 43(4):325–335

    Article  PubMed  Google Scholar 

  70. Emerson MR, Nelson SR, Samson FE, Pazdernik TL (1999) Hypoxia preconditioning attenuates brain edema associated with kainic acid-induced status epilepticus in rats. Brain Res 825(1–2):189–193

    Article  CAS  PubMed  Google Scholar 

  71. Argañaraz GA, Perosa SR, Lencioni EC, Bader M, Cavalheiro EA, Naffah-Mazzacoratti MG, Pesqueiro JB, Silva JA Jr (2004) Role of kinin B1 and B2 receptors in the development of pilocarpine model of epilepsy. Brain Res 1013:30–39. doi:10.1016/j.brainres.2004.03.046

    Article  Google Scholar 

  72. Argañaraz GA, Silva JA Jr, Perosa SR, Pessoa LG, Carvalho FF, Bascands JL, Bader M, Trindade ES, Amado D, Cavalheiro EA, Pesquero JB, Naffah-Mazzacoratti MG (2004) The synthesis and distribution of the kinin B1 and B2 receptors are modified in the hippocampus of rats submitted to pilocarpine model of epilepsy. Brain Res 1006:114–125. doi:10.1016/j.brainres.2003.12.050

    Article  PubMed  Google Scholar 

  73. Gouveia TL, Scorza FA, Silva MJ, Bandeira TA, Perosa SR, Argañaraz GA, Silva MP, Araujo TR, Frangiotti MI, Amado D, Cavalheiro EA, Silva JA Jr, Naffah-Mazzacoratti MG (2011) Lovastatin decreases the synthesis of inflammatory mediators in the hippocampus and blocks the hyperthermia of rats submitted to long-lasting status epilepticus. Epilepsy Behav 20:1–5. doi:10.1016/j.yebeh.2010.10.001

    Article  PubMed  Google Scholar 

  74. Perosa SR, Argañaraz GA, Goto EM, Costa LG, Konno AC, Varella PP, Santiago JF, Pesquero JB, Canzian M, Amado D, Yacubian EM, Carrete H Jr, Centeno RS, Cavalheiro EA, Silva JA Jr, Naffah-Mazzacoratti MG (2007) Kinin B1 and B2 receptors are overexpressed in the hippocampus of humans with temporal lobe epilepsy. Hippocampus 17:26–33. doi:10.1002/hipo.20239

    Article  CAS  PubMed  Google Scholar 

  75. Simões PS, Perosa SR, Arganãraz GA, Yacubian EM, Carrete H Jr, Centeno RS, Varella PP, Santiago JF, Canzian M, Silva JA Jr, Mortara RA, Amado D, Cavalheiro EA, Naffah-Mazzacoratti MG (2011) Kallikrein 1 is overexpressed by astrocytes in the hippocampus of patients with refractory temporal lobe epilepsy, associated with hippocampal sclerosis. Neurochem Int 58:477–482. doi:10.1016/j.neuint.2010.12.021

    Article  PubMed  Google Scholar 

  76. Vezzani A, Granata T (2005) Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46(11):1724–1743. doi:10.1111/j.1528-1167.2005.00298.x

    Article  CAS  PubMed  Google Scholar 

  77. Vezzani A, Moneta D, Richichi C, Aliprandi M, Burrows SJ, Ravizza T, Perego C, De Simoni MG (2002) Functional role of inflammatory cytokines and antiinflamatory molecules in seizures and epileptogenesis. Epilepsia 43(5):30–35

    Article  CAS  PubMed  Google Scholar 

  78. Voutsinos-Porche B, Koning E, Kaplan H, Ferrandon A, Guenounou M, Nehlig A, Motte J (2004) Temporal patterns of the cerebral inflammatory response in the rat lithium-pilocarpine model of temporal lobe epilepsy. Neurobiol Dis 17:385–402. doi:10.1016/j.nbd.2004.07.023

    Article  CAS  PubMed  Google Scholar 

  79. Göbel K, Pankratz S, Schneider-Hohendorf T, Bittner S, Schuhmann MK, Langer HF, Stoll G, Wiendl H, Kleinschnitz C, Meuth SG (2011) Blockade of the kinin receptor B1 protects from autoimmune CNS disease by reducing leukocyte trafficking. J Autoimmun 36(2):106–114. doi:10.1016/j.jaut.2010.11.004

    Article  PubMed  Google Scholar 

  80. Weissberg I, Reichert A, Heinemann U, Friedman A (2011) Blood-brain barrier dysfunction in epileptogenesis of the temporal lobe. Epilepsy Res Treat 2011(1):1–10. doi:10.1155/2011/143908

    Google Scholar 

  81. Xiao Z, Peng J, Yang L, Kong H, Yin F (2015) Interleukin-1β plays a role in the pathogenesis of mesial temporal lobe epilepsy through the PI3K/Akt/mTOR signaling pathway in hippocampal neurons. J Neuroimmunol 282:110–117. doi:10.1016/j.jneuroim.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  82. Coan AC, Morita ME, Campos BM, Bergo FP, Kubota BY, Cendes F (2013) Amygdala enlargement occurs in patients with mesial temporal lobe epilepsy and hippocampal sclerosis with early epilepsy onset. Epilepsy Behav 29(2):390–394. doi:10.1016/j.yebeh.2013.08.022

    Article  PubMed  Google Scholar 

  83. Kumar G, Mittal S, Moudgil SS, Kupsky WJ, Shah AK (2013) Histopathological evidence that hippocampal atrophy following status epilepticus is a result of neuronal necrosis. J Neurol Sci 334(1–2):186–191. doi:10.1016/j.jns.2013.08.016

    Article  PubMed  Google Scholar 

  84. Araújo MGL, Amorim RP, Buri MV, Marques-Carneiro JE, Araújo LFS, Predebon GM, Patsis VB, Paredes-Gamero EJ, Fernandes MJS (2016) The effect of the P2X7 receptor antagonista AZ10606120 in the pilocarpine-induced epilepsy model. Purinergic Signalling 12:343–410. doi:10.1007/s11302-016-9503-x

    Article  Google Scholar 

  85. Rozmer K, Gao P, Araújo MG, Khan MT, Liu J, Rong W, Tang Y, Franke H, Krügel U, Fernandes MJ, Illes P (2016) Pilocarpine-induced status epilepticus increases the sensitivity of P2X7 and P2Y1 receptors to nucleotides at neural progenitor cells of the juvenile rodent hippocampus. Cereb Cortex:1–18. doi:10.1093/cercor/bhw178

  86. Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17:3727–3738

    CAS  PubMed  Google Scholar 

  87. Delarasse C, Gonnord P, Galante M, Auger R, Daniel H, Motta I, Kanellopoulos JM (2009) Neural progenitor cell death is induced by extracellular ATP via ligation of P2X7 receptor. J Neurochem 109:846–857. doi:10.1111/j.1471-4159.2009.06008.x

    Article  CAS  PubMed  Google Scholar 

  88. Glaser T, de Oliveira SL, Cheffer A, Beco R, Martins P, Fornazari M, Lameu C, Junior HM, Coutinho-Silva R, Ulrich H (2014) Modulation of mouse embryonic stem cell proliferation and neural differentiation by the P2X7 receptor. PLoS One 9:e96281. doi:10.1371/journal.pone.0096281

    Article  PubMed  PubMed Central  Google Scholar 

  89. Messemer N, Kunert C, Grohmann M, Sobottka H, Nieber K, Zimmermann H, Franke H, Norenberg W, Straub I, Schaefer M, Riedel T, Illes P, Rubini P (2013) P2X7 receptors at adult neural progenitor cells of the mouse subventricular zone. Neuropharmacology 73:122–137. doi:10.1016/j.neuropharm.2013.05.017

    Article  CAS  PubMed  Google Scholar 

  90. Tsao HK, Chiu PH, Sun SH (2013) PKC-dependent ERK phosphorylation is essential for P2X7 receptor-mediated neuronal differentiation of neural progenitor cells. Cell Death Dis 4:e751. doi:10.1038/cddis.2013.274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cao X, Li LP, Qin XH, Li SJ, Zhang M, Wang Q, Hu HH, Fang YY, Gao YB, Li XW, Sun LR, Xiong WC, Gao TM, Zhu XH (2013) Astrocytic adenosine 5′-triphosphate release regulates the proliferation of neural stem cells in the adult hippocampus. Stem Cells 31:1633–1643. doi:10.1002/stem.1408

    Article  CAS  PubMed  Google Scholar 

  92. Liu X, Hashimoto-Torii K, Torii M, Haydar TF, Rakic P (2008) The role of ATP signaling in the migration of intermediate neuronal progenitors to the neocortical subventricular zone. Proc Natl Acad Sci U S A 105:11802–11807. doi:10.1073/pnas.0805180105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Suyama S, Sunabori T, Kanki H, Sawamoto K, Gachet C, Koizumi S, Okano H (2012) Purinergic signaling promotes proliferation of adult mouse subventricular zone cells. J Neurosci 32:9238–9247. doi:10.1523/JNEUROSCI.4001-11.2012

    Article  CAS  PubMed  Google Scholar 

  94. Klaft ZJ, Schulz SB, Maslarova A, Gabriel S, Heinemann U, Gerevich Z (2012) Extracellular ATP differentially affects epileptiform activity via purinergic P2X7 and adenosine A1 receptors in naive and chronic epileptic rats. Epilepsia 53(11):1978–1986. doi:10.1111/j.1528-1167.2012.03724.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian funds from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, nos. 142743/2010-0 and 248728/2012-1), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES). We thank Prof. Henning Ulrich who kindly provided the material for tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria José da Silva Fernandes.

Ethics declarations

All experimental procedures were performed under the supervision and with the approval of our internal Ethics Committee (Federal University of São Paulo, CEP N. 0961/10). Animal protocols were conducted in accordance with national and international legislation (Guidelines of the Brazilian College of Animal Experimentation, COBEA; NIH Guide for Care and Use of Laboratory Animals) and the experiments followed the principles outlined in the Basel Declaration [45].

Conflict of interest

Rebeca Padrão Amorim declares that she has no conflict of interest.

Michelle Gasparetti Leão Araújo declares that she has no conflict of interest.

Jorge Valero declares that he has no conflict of interest.

Iscia Lopes-Cendes declares that she has no conflict of interest.

Vinicius Davila Bitencourt Pascoal declares that he has no conflict of interest.

João Oliveira Malva declares that he has no conflict of interest.

Maria José da Silva Fernandes declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amorim, R.P., Araújo, M.G.L., Valero, J. et al. Silencing of P2X7R by RNA interference in the hippocampus can attenuate morphological and behavioral impact of pilocarpine-induced epilepsy. Purinergic Signalling 13, 467–478 (2017). https://doi.org/10.1007/s11302-017-9573-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-017-9573-4

Keywords

Navigation