Skip to main content
Log in

Hyperosmotic stress induces ATP release and changes in P2X7 receptor levels in human corneal and conjunctival epithelial cells

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Tear hyperosmolarity is a key event in dry eye. In this work, we analyzed whether hyperosmolar challenge induces ATP release on the ocular surface. Moreover, as extracellular ATP can activate P2X7 receptor, the changes in P2X7 protein levels and its involvement in pathological process triggered by hypertonic treatment were also examined. High-performance liquid chromatography analysis revealed that ATP levels significantly increased in human corneal and conjunctival epithelial cells exposed to hyperosmotic challenge as well as in dry eye patients as compared to control subjects. A significant reduction in cell viability was detected after hyperosmolar treatment, indicating that the rise in ATP release was mainly due to cell lysis/death. Additionally, vesicular nucleotide transporter was identified in both cell lines and their protein expression was upregulated in hypertonic media. P2X7 receptor truncated form together with the full-length form was identified in both cell lines, and experiments using specific antagonist and agonist for P2X7 indicated that this receptor did not mediate cell death induced by hyperosmolar stress. In conclusion, hyperosmotic stress induces ATP release. Extracellular ATP can activate P2X7 receptor leading to cytotoxicity in many cells/tissues; however, this does not occur in human corneal and conjunctival epithelial cells. In these cells, the presence of P2X7 receptor truncated form together with the full-length form hinders a P2X7 apoptotic behavior on the ocular surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baudouin C, Aragona P, Messmer EM, Tomlinson A, Calonge M, Boboridis KG, Akova YA, Geerling G, Labetoulle M, Rolando M (2013) Role of hyperosmolarity in the pathogenesis and management of dry eye disease: proceedings of the OCEAN group meeting. Ocul Surf 11:246–258

    Article  PubMed  Google Scholar 

  2. Chen M, Hu DN, Pan Z, Lu CW, Xue CY, Aass I (2010) Curcumin protects against hyperosmoticity-induced IL-1beta elevation in human corneal epithelial cell via MAPK pathways. Exp Eye Res 90:437–443

    Article  CAS  PubMed  Google Scholar 

  3. Corrales RM, Luo L, Chang EY, Pflugfelder SC (2008) Effects of osmoprotectants on hyperosmolar stress in cultured human corneal epithelial cells. Cornea 27:574–579

    Article  PubMed  Google Scholar 

  4. Luo L, Li DQ, Pflugfelder SC (2007) Hyperosmolarity-induced apoptosis in human corneal epithelial cells is mediated by cytochrome c and MAPK pathways. Cornea 26:452–460

    Article  PubMed  Google Scholar 

  5. Zimmermann H, Zebisch M, Strater N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eldred JA, Sanderson J, Wormstone M, Reddan JR, Duncan G (2003) Stress-induced ATP release from and growth modulation of human lens and retinal pigment epithelial cells. Biochem Soc Trans 31:1213–1215

    Article  CAS  PubMed  Google Scholar 

  7. Li A, Banerjee J, Leung CT, Peterson-Yantorno K, Stamer WD, Civan MM (2011) Mechanisms of ATP release, the enabling step in purinergic dynamics. Cell Physiol Biochem 28:1135–1144

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li A, Leung CT, Peterson-Yantorno K, Mitchell CH, Civan MM (2010) Pathways for ATP release by bovine ciliary epithelial cells, the initial step in purinergic regulation of aqueous humor inflow. Am J Physiol Cell Physiol 299:C1308–C1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luna C, Li G, Qiu J, Challa P, Epstein DL, Gonzalez P (2009) Extracellular release of ATP mediated by cyclic mechanical stress leads to mobilization of AA in trabecular meshwork cells. Invest Ophthalmol Vis Sci 50:5805–5810

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shahidullah M, Mandal A, Beimgraben C, Delamere NA (2012) Hyposmotic stress causes ATP release and stimulates Na, K-ATPase activity in porcine lens. J Cell Physiol 227:1428–1437

    Article  CAS  PubMed  Google Scholar 

  11. Srinivas SP, Mutharasan R, Fleiszig S (2002) Shear-induced ATP release by cultured rabbit corneal epithelial cells. Adv Exp Med Biol 506:677–685

    CAS  PubMed  Google Scholar 

  12. Lazarowski ER (2012) Vesicular and conductive mechanisms of nucleotide release. Purinergic Signal 8:359–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sawada K, Echigo N, Juge N, Miyaji T, Otsuka M, Omote H, Yamamoto A, Moriyama Y (2008) Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci U S A 105:5683–5686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Geisler JC, Corbin KL, Li Q, Feranchak AP, Nunemaker CS, Li C (2013) Vesicular nucleotide transporter-mediated ATP release regulates insulin secretion. Endocrinology 154:675–684

    Article  CAS  PubMed  Google Scholar 

  15. Iwatsuki K, Ichikawa R, Hiasa M, Moriyama Y, Torii K, Uneyama H (2009) Identification of the vesicular nucleotide transporter (VNUT) in taste cells. Biochem Biophys Res Commun 388:1–5

    Article  CAS  PubMed  Google Scholar 

  16. Sathe MN, Woo K, Kresge C, Bugde A, Luby-Phelps K, Lewis MA, Feranchak AP (2011) Regulation of purinergic signaling in biliary epithelial cells by exocytosis of SLC17A9-dependent ATP-enriched vesicles. J Biol Chem 286:25363–25376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sesma JI, Kreda SM, Okada SF, van Heusden C, Moussa L, Jones LC, O'Neal WK, Togawa N, Hiasa M, Moriyama Y, Lazarowski ER (2013) Vesicular nucleotide transporter regulates the nucleotide content in airway epithelial mucin granules. Am J Physiol Cell Physiol 304:C976–C984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takai E, Tsukimoto M, Harada H, Sawada K, Moriyama Y, Kojima S (2012) Autocrine regulation of TGF-beta1-induced cell migration by exocytosis of ATP and activation of P2 receptors in human lung cancer cells. J Cell Sci 125:5051–5060

    Article  CAS  PubMed  Google Scholar 

  19. Tokunaga A, Tsukimoto M, Harada H, Moriyama Y, Kojima S (2010) Involvement of SLC17A9-dependent vesicular exocytosis in the mechanism of ATP release during T cell activation. J Biol Chem 285:17406–17416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nicke A (2008) Homotrimeric complexes are the dominant assembly state of native P2X7 subunits. Biochem Biophys Res Commun 377:803–808

    Article  CAS  PubMed  Google Scholar 

  21. Di Virgilio F, Ferrari D, Adinolfi E (2009) P2X(7): a growth-promoting receptor-implications for cancer. Purinergic Signal 5:251–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dutot M, Liang H, Pauloin T, Brignole-Baudouin F, Baudouin C, Warnet JM, Rat P (2008) Effects of toxic cellular stresses and divalent cations on the human P2X7 cell death receptor. Mol Vis 14:889–897

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dutot M, Warnet JM, Baudouin C, Rat P (2008) Cytotoxicity of contact lens multipurpose solutions: role of oxidative stress, mitochondrial activity and P2X7 cell death receptor activation. Eur J Pharm Sci 33:138–145

    Article  CAS  PubMed  Google Scholar 

  24. Minns MS, Teicher G, Rich CB, Trinkaus-Randall V (2016) Purinoreceptor P2X7 regulation of Ca(2+) mobilization and cytoskeletal rearrangement is required for corneal reepithelialization after injury. Am J Pathol 186:285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mankus C, Chi C, Rich C, Ren R, Trinkaus-Randall V (2012) The P2X(7) receptor regulates proteoglycan expression in the corneal stroma. Mol Vis 18:128–138

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mayo C, Ren R, Rich C, Stepp MA, Trinkaus-Randall V (2008) Regulation by P2X7: epithelial migration and stromal organization in the cornea. Invest Ophthalmol Vis Sci 49:4384–4391

    Article  PubMed  PubMed Central  Google Scholar 

  27. McMonnies C, Ho A, Wakefield D (1998) Optimum dry eye classification using questionnaire responses. Adv Exp Med Biol 438:835–838

    Article  CAS  PubMed  Google Scholar 

  28. Gipson IK, Spurr-Michaud S, Argueso P, Tisdale A, Ng TF, Russo CL (2003) Mucin gene expression in immortalized human corneal-limbal and conjunctival epithelial cell lines. Invest Ophthalmol Vis Sci 44:2496–2506

    Article  PubMed  Google Scholar 

  29. Pflugfelder SC (2011) Tear dysfunction and the cornea: LXVIII Edward Jackson Memorial Lecture. Am J Ophthalmol 152(900–909):e901

    Google Scholar 

  30. Guzman-Aranguez A, Calvo P, Ropero I, Pintor J (2014) In vitro effects of preserved and unpreserved anti-allergic drugs on human corneal epithelial cells. Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics 30:790–798

    Article  CAS  Google Scholar 

  31. Feng YH, Li X, Wang L, Zhou L, Gorodeski GI (2006) A truncated P2X7 receptor variant (P2X7-j) endogenously expressed in cervical cancer cells antagonizes the full-length P2X7 receptor through hetero-oligomerization. J Biol Chem 281:17228–17237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mankus C, Rich C, Minns M, Trinkaus-Randall V (2011) Corneal epithelium expresses a variant of P2X(7) receptor in health and disease. PLoS One 6:e28541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guzman-Aranguez A, Santano C, Martin-Gil A, Fonseca B, Pintor J (2013) Nucleotides in the eye: focus on functional aspects and therapeutic perspectives. J Pharmacol Exp Ther 345:331–341

    Article  CAS  PubMed  Google Scholar 

  34. Tsubota K, Hata S, Okusawa Y, Egami F, Ohtsuki T, Nakamori K (1996) Quantitative videographic analysis of blinking in normal subjects and patients with dry eye. Arch Ophthalmol 114:715–720

    Article  CAS  PubMed  Google Scholar 

  35. Wang Q, Wang L, Feng YH, Li X, Zeng R, Gorodeski GI (2004) P2X7 receptor-mediated apoptosis of human cervical epithelial cells. Am J Physiol Cell Physiol 287:C1349–C1358

    Article  CAS  PubMed  Google Scholar 

  36. Takai E, Tsukimoto M, Harada H, Kojima S (2014) Autocrine signaling via release of ATP and activation of P2X7 receptor influences motile activity of human lung cancer cells. Purinergic Signal 10:487–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feng YH, Li X, Zeng R, Gorodeski GI (2006) Endogenously expressed truncated P2X7 receptor lacking the C-terminus is preferentially upregulated in epithelial cancer cells and fails to mediate ligand-induced pore formation and apoptosis. Nucleosides Nucleotides Nucleic Acids 25:1271–1276

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ilene Gipson, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA, for providing the HCLE cells. We are grateful to Leyre Nieto Roldan for her technical assistance. This work was supported by the Spanish Ministry of Economy (SAF2013-44416-R, SAF2016-77084R) and the Institute Carlos III (RETICS RD12/0034/0003, RD16/0008/0017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Guzman-Aranguez.

Ethics declarations

Conflict of interest

Ana Guzman-Aranguez declares that she has no conflict of interest.

María J. Pérez de Lara declares that she has no conflict of interest.

Jesús Pintor declares that he has no conflict of interest.

Ethical approval

This study was performed according to the Declaration of Helsinki. An informed consent was obtained from all participants and they were free to give up the session at any time.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzman-Aranguez, A., Pérez de Lara, M.J. & Pintor, J. Hyperosmotic stress induces ATP release and changes in P2X7 receptor levels in human corneal and conjunctival epithelial cells. Purinergic Signalling 13, 249–258 (2017). https://doi.org/10.1007/s11302-017-9556-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-017-9556-5

Keywords

Navigation