Skip to main content

Advertisement

Log in

Lack of functional P2X7 receptor aggravates brain edema development after middle cerebral artery occlusion

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

An Erratum to this article was published on 08 November 2016

Abstract

Effective therapeutic measures against the development of brain edema, a life-threatening complication of cerebral ischemia, are necessary to improve the functional outcome for the patient. Here, we identified a beneficial role of purinergic receptor P2X7 activation in acute ischemic stroke. Involvement of P2X7 in the development of neurological deficits, infarct size, brain edema, and glial responses after ischemic cerebral infarction has been analyzed. Neurologic evaluation, magnetic resonance imaging, and immunofluorescence assays were used to characterize the receptor’s effect on the disease progress during 72 h after transient middle cerebral artery occlusion (tMCAO). Sham-operated animals were included in all experiments for control purposes. We found P2X7-deficient mice to develop a more prominent brain edema with a trend towards more severe neurological deficits 24 h after tMCAO. Infarct sizes, T2 times, and apparent diffusion coefficients did not differ significantly between wild-type and P2X7−/− animals. Our results show a characteristic spatial distribution of reactive glia cells with strongly attenuated microglia activation in P2X7−/− mice 72 h after tMCAO. Our data indicate that P2X7 exerts a role in limiting the early edema formation, possibly by modulating glial responses, and supports later microglia activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

AQP4:

Aquaporin 4

CCA:

Common carotid artery

DWI:

Diffusion weighted image

ECA:

External carotid artery

ICA:

Internal carotid artery

MCA:

Middle cerebral artery

MCAO:

Middle cerebral artery occlusion

P2X7−/− :

P2X7 receptor knockout

NMR:

Nuclear magnetic resonance

pMCAO:

Permanent middle cerebral artery occlusion

RARE:

Rapid acquisition with relaxation enhancement

ROI:

Region of interest

tMCAO:

Transient middle cerebral artery occlusion

VOI:

Volume of interest

WT:

Wild-type

References

  1. Del Puerto A, Wandosell F, Garrido JJ (2013) Neuronal and glial purinergic receptors functions in neuron development and brain disease. Front Cell Neurosci 7:197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Franke H, Grummich B, Hartig W, Grosche J, Regenthal R, Edwards RH, Illes P, Krügel U (2006) Changes in purinergic signaling after cerebral injury—involvement of glutamatergic mechanisms? Int J Dev Neurosci 24(2–3):123–132

    Article  CAS  PubMed  Google Scholar 

  3. Oliveira JF, Riedel T, Leichsenring A, Heine C, Franke H, Krügel U, Nörenberg W, Illes P (2011) Rodent cortical astroglia express in situ functional P2X7 receptors sensing pathologically high ATP concentrations. Cereb Cortex 21(4):806–820

    Article  PubMed  Google Scholar 

  4. Domercq M, Perez-Samartin A, Aparicio D, Alberdi E, Pampliega O, Matute C (2007) P2X7 receptors mediate ischemic damage to oligodendrocytes. Glia 58(6):730–740

    Google Scholar 

  5. Nishida K, Nakatani T, Ohishi A, Okuda H, Higashi Y, Matsuo T, Fujimoto S, Nagasawa K (2012) Mitochondrial dysfunction is involved in P2X7 receptor-mediated neuronal cell death. J Neurochem 122(6):1118–1128

    Article  CAS  PubMed  Google Scholar 

  6. Monif M, Burnstock G, Williams DA (2010) Microglia: proliferation and activation driven by the P2X7 receptor. Int J Biochem Cell Biol 42(11):1753–1756

    Article  CAS  PubMed  Google Scholar 

  7. Kimbler DE, Shields J, Yanasak N, Vender JR, Dhandapani KM (2007) Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice. PLoS One 7(7):e41229

    Article  CAS  Google Scholar 

  8. Ryu JK, McLarnon JG (2008) Block of purinergic P2X7 receptor is neuroprotective in an animal model of Alzheimer’s disease. Neuroreport 19(17):1715–1719

    Article  CAS  PubMed  Google Scholar 

  9. Lambertsen KL, Biber K, Finsen B (2012) Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab 32(9):1677–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Margaill I, Plotkine M, Lerouet D (2005) Antioxidant strategies in the treatment of stroke. Free Radic Biol Med 39(4):429–443

    Article  CAS  PubMed  Google Scholar 

  11. Alves LA, Bezerra RJ, Faria RX, Ferreira LG, da Silva FV (2013) Physiological roles and potential therapeutic applications of the P2X7 receptor in inflammation and pain. Molecules 18(9):10953–10972

    Article  CAS  PubMed  Google Scholar 

  12. Yanagisawa D, Kitamura Y, Takata K, Hide I, Nakata Y, Taniguchi T (2008) Possible involvement of P2X7 receptor activation in microglial neuroprotection against focal cerebral ischemia in rats. Biol Pharm Bull 31(6):1121–1130

    Article  CAS  PubMed  Google Scholar 

  13. Myer DJ, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV (2006) Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 129(Pt 10):2761–2772

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki T, Hide I, Ido K, Kohsaka S, Inoue K, Nakata Y (2004) Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci 24(1):1–7

    Article  CAS  PubMed  Google Scholar 

  15. Le Feuvre R, Brough D, Rothwell N (2002) Extracellular ATP and P2X7 receptors in neurodegeneration. Eur J Pharmacol 447(2–3):261–269

    Article  PubMed  Google Scholar 

  16. Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, Griffiths RJ, Gabel CA (2001) Altered cytokine production in mice lacking P2X7 receptors. J Biol Chem 276(1):125–132

    Article  CAS  PubMed  Google Scholar 

  17. Engel O, Kolodziej S, Dirnagl U, Prinz V (2011) Modeling stroke in mice - middle cerebral artery occlusion with the filament model. J Vis Exp 47:2423

    Google Scholar 

  18. Menzies SA, Hoff JT, Betz AL (1992) Middle cerebral artery occlusion in rats: a neurological and pathological evaluation of a reproducible model. Neurosurgery 31(1):100–107

    Article  CAS  PubMed  Google Scholar 

  19. Dijkhuizen RM, Nicolay K (2003) Magnetic resonance imaging in experimental models of brain disorders. J Cereb Blood Flow Metab 23(12):1383–1402

    Article  PubMed  Google Scholar 

  20. Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y (2001) Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32(5):1208–1215

    Article  CAS  PubMed  Google Scholar 

  21. Gever JR, Cockayne DA, Dillon MP, Burnstock G, Ford AP (2006) Pharmacology of P2X channels. Pflügers Arch 452(5):513–537

    Article  CAS  PubMed  Google Scholar 

  22. Eriksdotter-Nilsson M, Bjorklund H, Olson L (1986) Laminin immunohistochemistry: a simple method to visualize and quantitate vascular structures in the mammalian brain. J Neurosci Methods 17(4):275–286

    Article  CAS  PubMed  Google Scholar 

  23. Ji K, Tsirka SE (2012) Inflammation modulates expression of laminin in the central nervous system following ischemic injury. J Neuroinflammation 9:159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gu BJ, Wiley JS (2006) Rapid ATP-induced release of matrix metalloproteinase 9 is mediated by the P2X7 receptor. Blood 107(12):4946–4953

    Article  CAS  PubMed  Google Scholar 

  25. Hill LM, Gavala ML, Lenertz LY, Bertics PJ (2010) Extracellular ATP may contribute to tissue repair by rapidly stimulating purinergic receptor X7-dependent vascular endothelial growth factor release from primary human monocytes. J Immunol 185(5):3028–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rha JH, Saver JL (2007) The impact of recanalization on ischemic stroke outcome: a meta-analysis. Stroke 38(3):967–973

    Article  PubMed  Google Scholar 

  27. Tanaka Y, Fukumitsu H, Soumiya H, Yoshimura S, Iwama T, Furukawa S (2012) 2-decenoic acid ethyl ester, a compound that elicits neurotrophin-like intracellular signals, facilitating functional recovery from cerebral infarction in mice. Int J Mol Sci 13(4):4968–4981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davis MF, Lay C, Frostig RD (2013) Permanent cerebral vessel occlusion via double ligature and transection. J Vis Exp (77)

  29. Yeung PK, Lo AC, Leung JW, Chung SS, Chung SK (2009) Targeted overexpression of endothelin-1 in astrocytes leads to more severe cytotoxic brain edema and higher mortality. J Cereb Blood Flow Metab 29(12):1891–1902

    Article  CAS  PubMed  Google Scholar 

  30. Walberer M, Blaes F, Stolz E, Muller C, Schoenburg M, Tschernatsch M, Bachmann G, Gerriets T (2007) Midline-shift corresponds to the amount of brain edema early after hemispheric stroke – an MRI study in rats. J Neurosurg Anesthesiol 19(2):105–110

    Article  PubMed  Google Scholar 

  31. Lenglet S, Montecucco F, Denes A, Coutts G, Pinteaux E, Mach F, Schaller K, Gasche Y, Copin JC (2014) Recombinant tissue plasminogen activator enhances microglial cell recruitment after stroke in mice. J Cereb Blood Flow Metab 34(5):802–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Franke H, Günther A, Grosche J, Schmidt R, Rossner S, Reinhardt R, Faber-Zuschratter H, Schneider D, Illes P (2004) P2X7 receptor expression after ischemia in the cerebral cortex of rats. J Neuropathol Exp Neurol 63(7):686–699

    Article  CAS  PubMed  Google Scholar 

  33. Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao X, Wang H, Sun G, Zhang J, Edwards NJ, Aronowski J (2015) Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J Neurosci 35(32):11281–11291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zanin RF, Braganhol E, Bergamin LS, Campesato LF, Filho AZ, Moreira JC, Morrone FB, Sevigny J, Schetinger MR, de Souza Wyse AT, Battastini AM (2012) Differential macrophage activation alters the expression profile of NTPDase and ecto-5'-nucleotidase. PLoS One 7(2):e31205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Apolloni S, Amadio S, Montilli C, Volonte C, D’Ambrosi N (2013) Ablation of P2X7 receptor exacerbates gliosis and motoneuron death in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. Hum Mol Genet 22(20):4102–4116

    Article  CAS  PubMed  Google Scholar 

  37. Pedata F, Dettori I, Coppi E, Melani A, Fusco I, Corradetti R, Pugliese AM (2015) Purinergic signalling in brain ischemia. Neuropharmacology. In Press.

  38. Zador Z, Stiver S, Wang V, Manley GT (2009) Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol 190:159–170

    Article  CAS  Google Scholar 

  39. Lee M, Lee SJ, Choi HJ, Jung YW, Frokiaer J, Nielsen S, Kwon TH (2008) Regulation of AQP4 protein expression in rat brain astrocytes: role of P2X7 receptor activation. Brain Res 1195:1–11

    Article  CAS  PubMed  Google Scholar 

  40. Hirayama Y, Ikeda-Matsuo Y, Notomi S, Enaida H, Kinouchi H, Koizumi S (2015) Astrocyte-mediated ischemic tolerance. J Neurosci 35(9):3794–3805

    Article  CAS  PubMed  Google Scholar 

  41. Franciosi S, De Gasperi R, Dickstein DL, English DF, Rocher AB, Janssen WG, Christoffel D, Sosa MA, Hof PR, Buxbaum JD, Elder GA (2007) Pepsin pretreatment allows collagen IV immunostaining of blood vessels in adult mouse brain. J Neurosci Methods 163(1):76–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Szabo A, Kalman M (2004) Disappearance of the post-lesional laminin immunopositivity of brain vessels is parallel with the formation of gliovascular junctions and common basal lamina. A double-labelling immunohistochemical study. Neuropathol Appl Neurobiol 30(2):169–177

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) within the framework of Research Group FOR748 and TRR67 (project A6). The authors are grateful to André Rex for technical advice. Expert technical assistance and animal care were provided by Katrin Becker and Anne-Kathrin Krause.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schaefer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

Funding

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) within the framework of Research Group FOR748 and TRR67 (project A6).

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11302-016-9523-6.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1049 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaiser, M., Penk, A., Franke, H. et al. Lack of functional P2X7 receptor aggravates brain edema development after middle cerebral artery occlusion. Purinergic Signalling 12, 453–463 (2016). https://doi.org/10.1007/s11302-016-9511-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9511-x

Keywords

Navigation