Skip to main content
Log in

Hyperglycemia alters E-NTPDases, ecto-5′-nucleotidase, and ectosolic and cytosolic adenosine deaminase activities and expression from encephala of adult zebrafish (Danio rerio)

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Hyperglycemia is the main feature for the diagnosis of diabetes mellitus (DM). Some studies have demonstrated the relationship between DM and dysfunction on neurotransmission systems, such as the purinergic system. In this study, we evaluated the extracellular nucleotide hydrolysis and adenosine deamination activities from encephalic membranes of hyperglycemic zebrafish. A significant decrease in ATP, ADP, and AMP hydrolyses was observed at 111-mM glucose-treated group, which returned to normal levels after 7 days of glucose withdrawal. A significant increase in ecto-adenosine deaminase activity was observed in 111-mM glucose group, which remain elevated after 7 days of glucose withdrawal. The soluble-adenosine deaminase activity was significantly increased just after 7 days of glucose withdrawal. We also evaluated the gene expressions of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-5′-nucleotidase, ADA, and adenosine receptors from encephala of adult zebrafish. The entpd 2a.1, entpd 2a.2, entpd 3, and entpd 8 mRNA levels from encephala of adult zebrafish were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expressions of adenosine receptors (adora 1 , adora 2aa , adora 2ab , and adora 2b ) were decreased in 111-mM glucose-treated and glucose withdrawal groups. The gene expression of ADA (ada 2a.1) was decreased in glucose withdrawal group. Maltodextrin, used as a control, did not affect the expression of adenosine receptors, ADA and E-NTPDases 2, 3, and 8, while the expression of ecto-5′-nucleotidase was slightly increased and the E-NTPDases 1 decreased. These findings demonstrated that hyperglycemia might affect the ecto-nucleotidase and adenosine deaminase activities and gene expression in zebrafish, probably through a mechanism involving the osmotic effect, suggesting that the modifications caused on purinergic system may also contribute to the diabetes-induced progressive cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aguiree F, Brown A, Cho N, Dahlquist G (2013) IDF diabetes atlas. International Diabetes Federation

  2. Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15:539–553. doi:10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  3. Harris MI (1988) Classification and diagnostic criteria for diabetes mellitus and other categories of glucose intolerance. Prim Care 15:205–225

    CAS  PubMed  Google Scholar 

  4. Motta M, Sorace S, Restuccia S et al (1996) Cognitive impairment in the elderly diabetics. Arch Gerontol Geriatr 22(Suppl 1):43–46

    Article  PubMed  Google Scholar 

  5. Kodl CT, Seaquist ER (2008) Cognitive dysfunction and diabetes mellitus. Endocr Rev 29:494–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Launer LJ, Miller ME, Williamson JD et al (2011) Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy. Lancet Neurol 10:969–977

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen Z, Zhong C (2013) Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 108:21–43. doi:10.1016/j.pneurobio.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  8. Capiotti KM, Antonioli R, Kist LW et al (2014) Persistent impaired glucose metabolism in a zebrafish hyperglycemia model. Comp Biochem Physiol B Biochem Mol Biol 171:58–65

    Article  CAS  PubMed  Google Scholar 

  9. Guyot LL, Diaz FG, O’Regan MH et al (2001) The effect of streptozotocin-induced diabetes on the release of excitotoxic and other amino acids from the ischemic rat cerebral cortex. Neurosurgery 48:385–391

    CAS  PubMed  Google Scholar 

  10. Yamato T, Misumi Y, Yamasaki S et al (2004) Diabetes mellitus decreases hippocampal release of neurotransmitters: an in vivo microdialysis study of awake, freely moving rats. Diabetes Nutr Metab 17:128–136

    CAS  PubMed  Google Scholar 

  11. Burnstock G, Novak I (2013) Purinergic signalling and diabetes. Purinergic Signal 9:307–324. doi:10.1007/s11302-013-9359-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stefanello N, Schmatz R, Pereira LB et al (2014) Effects of chlorogenic acid, caffeine, and coffee on behavioral and biochemical parameters of diabetic rats. Mol Cell Biochem 388:277–286. doi:10.1007/s11010-013-1919-9

    Article  CAS  PubMed  Google Scholar 

  13. Gibb AJ, Halliday FC (1996) Fast purinergic transmission in the central nervous system. Semin Neurosci 8:225–232

    Article  CAS  Google Scholar 

  14. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502. doi:10.1007/s11302-012-9309-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783(5):673–694

    Article  CAS  PubMed  Google Scholar 

  16. Schmatz R, Mazzanti CM, Spanevello R et al (2009) Ectonucleotidase and acetylcholinesterase activities in synaptosomes from the cerebral cortex of streptozotocin-induced diabetic rats and treated with resveratrol. Brain Res Bull 80:371–376

    Article  CAS  PubMed  Google Scholar 

  17. Roszek K, Czarnecka J (2014) Is ecto-nucleoside triphosphate diphosphohydrolase (NTPDase)-based therapy of central nervous system disorders possible? Mini-Rev Med Chem 14(14):1–16

    Google Scholar 

  18. Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ernst PB, Garrison JC, Thompson LF (2010) Much ado about adenosine: adenosine synthesis and function in regulatory T cell biology. J Immunol 185:1993–1998. doi:10.4049/jimmunol.1000108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Augusto E, Matos M, Sévigny J et al (2013) Ecto-5′-nucleotidase (CD73)-mediated formation of adenosine is critical for the striatal adenosine A2A receptor functions. J Neurosci 33:11390–11399. doi:10.1523/JNEUROSCI.5817-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sala-Newby GB, Skladanowski a C, Newby a C (1999) The mechanism of adenosine formation in cells: cloning of cytosolic 5′-nucleotidase-I. J Biol Chem 274:17789–17793. doi:10.1074/jbc.274.25.17789

    Article  CAS  PubMed  Google Scholar 

  22. Morrison PD, Mackinnon MW, Bartrup JT et al (1992) Changes in adenosine sensitivity in the hippocampus of rats with streptozotocin-induced diabetes. Br J Pharmacol 105:1004–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duarte JM, Oliveira CR, Ambrósio AF, Cunha RA (2006) Modification of adenosine A1 and A2A receptor density in the hippocampus of streptozotocin-induced diabetic rats. Neurochem Int 48:144–150. doi:10.1016/j.neuint.2005.08.008

    Article  CAS  PubMed  Google Scholar 

  24. Schmatz R, Schetinger MRC, Spanevello RM et al (2009) Effects of resveratrol on nucleotide degrading enzymes in streptozotocin-induced diabetic rats. Life Sci 84:345–350. doi:10.1016/j.lfs.2008.12.019

    Article  CAS  PubMed  Google Scholar 

  25. Lunkes GIL, Lunkes DS, Morsch VM et al (2004) NTPDase and 5′-nucleotidase activities in rats with alloxan-induced diabetes. Diabetes Res Clin Pract 65:1–6. doi:10.1016/j.diabres.2003.11.016

    Article  CAS  PubMed  Google Scholar 

  26. Pedroso GL, Hammes TO, Escobar TD, Fracasso LB, Forgiarini LF, da Silveira TR (2012) Blood collection for biochemical analysis in adult zebrafish. J Vis Exp 26, e3865

    Google Scholar 

  27. Wilson JM, Bunte RM, Carty AJ (2009) Evaluation of rapid cooling and tricaine methanesulfonate (MS222) as methods of euthanasia in zebrafish (Danio rerio). J Am Assoc Lab Anim Sci 48:785–789

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rico EP, Senger MR, da G Fauth M et al (2003) ATP and ADP hydrolysis in brain membranes of zebrafish (Danio rerio). Life Sci 73:2071–2082. doi:10.1016/S0024-3205(03)00596-4

    Article  CAS  PubMed  Google Scholar 

  29. Rosemberg DB, Rico EP, Senger MR et al (2008) Kinetic characterization of adenosine deaminase activity in zebrafish (Danio rerio) brain. Comp Biochem Physiol B Biochem Mol Biol 151:96–101. doi:10.1016/j.cbpb.2008.06.001

    Article  PubMed  Google Scholar 

  30. Senger MR, Rico EP, Dias RD et al (2004) Ecto-5′-nucleotidase activity in brain membranes of zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 139:203–207. doi:10.1016/j.cbpc.2004.07.011

    Article  PubMed  Google Scholar 

  31. Barnes JM, Murphy PA, Kirkham D, Henley JM (1993) Interaction of guanine nucleotides with [3H] kainate and 6-[3H] cyano-7-nitroquinoxaline-2,3-dione binding in goldfish brain. J Neurochem 61:1685–1691

    Article  CAS  PubMed  Google Scholar 

  32. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  33. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380

    Article  CAS  PubMed  Google Scholar 

  34. Weisman MI, Caiolfa VR, Parola AH (1988) Adenosine deaminase-complexing protein from bovine kidney, isolation of two distinct subunits. J Biol Chem 263:5266–5270

    CAS  PubMed  Google Scholar 

  35. Pereira VM, Bortolotto JW, Kist LW et al (2012) Endosulfan exposure inhibits brain AChE activity and impairs swimming performance in adult zebrafish (Danio rerio). Neurotoxicology 33:469–475

    Article  CAS  PubMed  Google Scholar 

  36. Tang R, Dodd A, Lai D et al (2007) Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochim Biophys Sin 39:384–390

    Article  CAS  PubMed  Google Scholar 

  37. Capiotti KM, Menezes FP, Nazario LR et al (2011) Early exposure to caffeine affects gene expression of adenosine receptors, DARPP-32 and BDNF without affecting sensibility and morphology of developing zebrafish (Danio rerio). Neurotoxicol Teratol 33:680–685

    Article  CAS  PubMed  Google Scholar 

  38. Tseng Y-C, Chen R-D, Lee J-R et al (2009) Specific expression and regulation of glucose transporters in zebrafish ionocytes. Am J Physiol Regul Integr Comp Physiol 297:R275–R290. doi:10.1152/ajpregu.00180.2009

    Article  CAS  PubMed  Google Scholar 

  39. Oggier DM, Weisbrod CJ, Stoller AM et al (2010) Effects of diazepam on gene expression and link to physiological effects in different life stages in zebrafish Danio rerio. Environ Sci Technol 44:7685–7691. doi:10.1021/es100980r

    Article  CAS  PubMed  Google Scholar 

  40. Nery LR, Rodrigues MM, Rosemberg DB et al (2011) Regulation of E-cadherin expression by growth factor receptors in cancer cells. J Surg Oncol 104:220–221. doi:10.1002/jso.21898

    Article  PubMed  Google Scholar 

  41. Roszek K, Czarnecka J (2015) Is ecto-nucleoside triphosphate diphosphohydrolase (NTPDase)-based therapy of central nervous system disorders possible? Mini-Rev Med Chem 15(1):5–20

    Article  CAS  PubMed  Google Scholar 

  42. Capiotti KM, De Moraes DA, Menezes FP et al (2014) Hyperglycemia induces memory impairment linked to increased acetylcholinesterase activity in zebrafish (Danio rerio). Behav Brain Res 274:319–325. doi:10.1016/j.bbr.2014.08.033

    Article  CAS  PubMed  Google Scholar 

  43. Pinto-Duarte A, Coelho JE, Cunha RA et al (2005) Adenosine A2A receptors control the extracellular levels of adenosine through modulation of nucleoside transporters activity in the rat hippocampus. J Neurochem 93:595–604

    Article  CAS  PubMed  Google Scholar 

  44. Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    Article  CAS  PubMed  Google Scholar 

  45. Fredholm BB, Chen J-F, Masino SA, Vaugeois J-M (2005) Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu Rev Pharmacol Toxicol 45:385–412

    Article  CAS  PubMed  Google Scholar 

  46. Boison D, Shen H-Y (2010) Adenosine kinase is a new therapeutic target to prevent ischemic neuronal death. Open Drug Discov J 2:108–118

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Miron VR, Bauermann L, Morsch ALB et al (2007) Enhanced NTPDase and 5′-nucleotidase activities in diabetes mellitus and iron-overload model. Mol Cell Biochem 298:101–107. doi:10.1007/s11010-006-9357-6

    Article  CAS  PubMed  Google Scholar 

  48. Duarte JMN, Oses JP, Rodrigues RJ, Cunha RA (2007) Modification of purinergic signaling in the hippocampus of streptozotocin-induced diabetic rats. Neuroscience 149:382–391. doi:10.1016/j.neuroscience.2007.08.005

    Article  CAS  PubMed  Google Scholar 

  49. Kukulski F, Lévesque SA, Lavoie ÉG et al (2005) Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8. Purinergic Signal 1:193–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Massé K, Bhamra S, Eason R, Dale N, Jones EA (2007) Purine-mediated signalling triggers eye development. Nature 449(7165):1058–1062

    Article  PubMed  Google Scholar 

  51. Sträter N (2006) Ecto-5′-nucleotidase: structure function relationships. Purinergic Signal 2:343–350

    Article  PubMed  PubMed Central  Google Scholar 

  52. Maier SA, Galellis JR, McDermid HE (2005) Phylogenetic analysis reveals a novel protein family closely related to adenosine deaminase. J Mol Evol 61:776–794. doi:10.1007/s00239-005-0046-y

    Article  CAS  PubMed  Google Scholar 

  53. Rosemberg DB, Rico EP, Guidoti MR et al (2007) Adenosine deaminase-related genes: molecular identification, tissue expression pattern and truncated alternative splice isoform in adult zebrafish (Danio rerio). Life Sci 81:1526–1534. doi:10.1016/j.lfs.2007.09.019

    Article  CAS  PubMed  Google Scholar 

  54. Franco R, Valenzuela A, Lluis C, Blanco J (1998) Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes. Immunol Rev 161:27–42

    Article  CAS  PubMed  Google Scholar 

  55. Cox DJ, Kovatchev BP, Gonder-Frederick LA et al (2005) Relationships between hyperglycemia and cognitive performance among adults with type 1 and type 2 diabetes. Diabetes Care 28:71–77. doi:10.2337/diacare.28.1.71

    Article  PubMed  Google Scholar 

  56. Duarte JMN, Agostinho PM, Carvalho RA, Cunha RA (2012) Caffeine consumption prevents diabetes-induced memory impairment and synaptotoxicity in the hippocampus of nonczno10/ltj mice. PLoS One 7, e21899. doi:10.1371/journal.pone.0021899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zavialov AV, Engström A (2005) Human ADA2 belongs to a new family of growth factors with adenosine deaminase activity. Biochem J 391:51–57. doi:10.1042/BJ20050683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Salgado H, Santos-Zavaleta A, Gama-Castro S et al (2001) RegulonDB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12. Nucleic Acids Res 29:72–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Keseler IM, Collado-Vides J, Gama-Castro S et al (2005) EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33

  60. Artola A, Kamal A, Ramakers GM et al (2002) Synaptic plasticity in the diabetic brain: advanced aging? Prog Brain Res 138:305–314

    Article  CAS  PubMed  Google Scholar 

  61. Faulhaber-Walter R, Jou W, Mizel D et al (2011) Impaired glucose tolerance in the absence of adenosine A1 receptor signaling. Diabetes 60:2578–2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yamagishi S, Ueda S, Okuda S (2007) Food-derived advanced glycation end products (AGEs): a novel therapeutic target for various disorders. Curr Pharm Des 13(27):2832–2836

    Article  CAS  PubMed  Google Scholar 

  63. Zimmermann H (2008) ATP and acetylcholine, equal brethren. Neurochem Int 52:634–648

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by DECIT/SCTIE-MS through Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) (proclamation 10/0036-5, conv. no. 700545/2008–PRONEX). K.M.C. is recipient of FAPERGS/Capes fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosane Souza Da Silva.

Ethics declarations

Conflict of interest

The authors declare that not potential conflict of interests is relevant to this article.

Disclosure statement

The authors declare that no competing financial interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capiotti, K.M., Siebel, A.M., Kist, L.W. et al. Hyperglycemia alters E-NTPDases, ecto-5′-nucleotidase, and ectosolic and cytosolic adenosine deaminase activities and expression from encephala of adult zebrafish (Danio rerio). Purinergic Signalling 12, 211–220 (2016). https://doi.org/10.1007/s11302-015-9494-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-015-9494-z

Keywords

Navigation