Skip to main content
Log in

The touching story of purinergic signaling in epithelial and endothelial cells

  • Review
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Burnstock G, Verkhratsky A (2009) Evolutionary origins of the purinergic signalling system. Acta Physiol (Oxf) 195(4):415–447

    Article  CAS  Google Scholar 

  2. Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304

    Article  PubMed  CAS  Google Scholar 

  3. Romanello M et al (2001) Mechanically induced ATP release from human osteoblastic cells. Biochem Biophys Res Commun 289(5):1275–1281

    Article  PubMed  CAS  Google Scholar 

  4. Grierson JP, Meldolesi J (1995) Shear stress-induced [Ca2+]i transients and oscillations in mouse fibroblasts are mediated by endogenously released ATP. J Biol Chem 270(9):4451–4456

    Article  PubMed  CAS  Google Scholar 

  5. Sauer H, Hescheler J, Wartenberg M (2000) Mechanical strain-induced Ca2+ waves are propagated via ATP release and purinergic receptor activation. Am J Physiol Cell Physiol 279(2):C295–C307

    PubMed  CAS  Google Scholar 

  6. Moerenhout M, Vereecke J, Himpens B (2001) Mechanism of intracellular Ca2+-wave propagation elicited by mechanical stimulation in cultured endothelial CPAE cells. Cell Calcium 29(2):117–123

    Article  PubMed  CAS  Google Scholar 

  7. Homolya L, Steinberg TH, Boucher RC (2000) Cell to cell communication in response to mechanical stress via bilateral release of ATP and UTP in polarized epithelia. J Cell Biol 150(6):1349–1360

    Article  PubMed  CAS  Google Scholar 

  8. Simmons NL (1981) Identification of a purine (P2) receptor linked to ion transport in a cultured renal (MDCK) epithelium. Br J Pharmacol 73(2):379–384

    PubMed  CAS  Google Scholar 

  9. Zegarra-Moran O, Romeo G, Galietta LJ (1995) Regulation of transepithelial ion transport by two different purinoceptors in the apical membrane of canine kidney (MDCK) cells. Br J Pharmacol 114(5):1052–1056

    PubMed  CAS  Google Scholar 

  10. Post SR, Jacobson JP, Insel PA (1996) P2 purinergic receptor agonists enhance cAMP production in Madin-Darby canine kidney epithelial cells via an autocrine/paracrine mechanism. J Biol Chem 271(4):2029–2032

    Article  PubMed  CAS  Google Scholar 

  11. Post SR et al (1998) ATP activates cAMP production via multiple purinergic receptors in MDCK-D1 epithelial cells. Blockade of an autocrine/paracrine pathway to define receptor preference of an agonist. J Biol Chem 273(36):23093–23097

    Article  PubMed  CAS  Google Scholar 

  12. Ostrom RS et al (2001) Key role for constitutive cyclooxygenase-2 of MDCK cells in basal signaling and response to released ATP. Am J Physiol Cell Physiol 281(2):C524–C531

    PubMed  CAS  Google Scholar 

  13. Ostrom RS, Gregorian C, Insel PA (2000) Cellular release of and response to ATP as key determinants of the set-point of signal transduction pathways. J Biol Chem 275(16):11735–11739

    Article  PubMed  CAS  Google Scholar 

  14. Geyti CS et al (2008) Slow spontaneous [Ca2+] i oscillations reflect nucleotide release from renal epithelia. Pflugers Arch 455(6):1105–1117

    Article  PubMed  CAS  Google Scholar 

  15. Praetorius HA, Leipziger J (2010) Intrarenal purinergic signaling in the control of renal tubular transport. Annu Rev Physiol 72:377–393

    Article  PubMed  CAS  Google Scholar 

  16. Xin C et al (2004) Heterologous desensitization of the sphingosine-1-phosphate receptors by purinoceptor activation in renal mesangial cells. Br J Pharmacol 143(5):581–589

    Article  PubMed  CAS  Google Scholar 

  17. Corriden R, Insel PA (2010) Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Sci Signal 3(104):re1

    Article  PubMed  CAS  Google Scholar 

  18. Praetorius HA, Leipziger J (2009) ATP release from non-excitable cells. Purinergic Signal 5(4):433–446

    Article  PubMed  CAS  Google Scholar 

  19. Burnstock G (2009) Purinergic mechanosensory transduction and visceral pain. Mol Pain 5:69

    Article  PubMed  CAS  Google Scholar 

  20. Knight GE et al (2002) ATP is released from guinea pig ureter epithelium on distension. Am J Physiol Renal Physiol 282(2):F281–F288

    PubMed  CAS  Google Scholar 

  21. Burnstock G (2008) Unresolved issues and controversies in purinergic signalling. J Physiol 586(14):3307–3312

    Article  PubMed  CAS  Google Scholar 

  22. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87(2):659–797

    Article  PubMed  CAS  Google Scholar 

  23. Karanauskaite J et al (2009) Quantal ATP release in rat beta-cells by exocytosis of insulin-containing LDCVs. Pflugers Arch 458(2):389–401

    Article  PubMed  CAS  Google Scholar 

  24. Bodin P, Burnstock G (2001) Evidence that release of adenosine triphosphate from endothelial cells during increased shear stress is vesicular. J Cardiovasc Pharmacol 38(6):900–908

    Article  PubMed  CAS  Google Scholar 

  25. Orriss IR et al (2009) Hypoxia stimulates vesicular ATP release from rat osteoblasts. J Cell Physiol 220(1):155–162

    Article  PubMed  CAS  Google Scholar 

  26. Sabirov RZ, Okada Y (2005) ATP release via anion channels. Purinergic Signal 1(4):311–328

    Article  PubMed  CAS  Google Scholar 

  27. Novak I (2011) Purinergic signalling in epithelial ion transport: regulation of secretion and absorption. Acta Physiol (Oxf) 202(3):501–522

    Article  CAS  Google Scholar 

  28. Locovei S, Bao L, Dahl G (2006) Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci U S A 103(20):7655–7659

    Article  PubMed  CAS  Google Scholar 

  29. Lazarowski ER et al (2011) Nucleotide release by airway epithelia. Subcell Biochem 55:1–15

    Article  PubMed  Google Scholar 

  30. Leipziger J (2003) Control of epithelial transport via luminal P2 receptors. Am J Physiol Renal Physiol 284(3):F419–F432

    PubMed  CAS  Google Scholar 

  31. Wong PY (1988) Control of anion and fluid secretion by apical P2-purinoceptors in the rat epididymis. Br J Pharmacol 95(4):1315–1321

    PubMed  CAS  Google Scholar 

  32. Matos JE et al (2007) Distal colonic Na(+) absorption inhibited by luminal P2Y(2) receptors. Pflugers Arch 454(6):977–987

    Article  PubMed  CAS  Google Scholar 

  33. Devor DC, Pilewski JM (1999) UTP inhibits Na+ absorption in wild-type and DeltaF508 CFTR-expressing human bronchial epithelia. Am J Physiol 276(4 Pt 1):C827–C837

    PubMed  CAS  Google Scholar 

  34. Inglis SK et al (1999) Effect of luminal nucleotides on Cl− secretion and Na+ absorption in distal bronchi. Pflugers Arch 438(5):621–627

    Article  PubMed  CAS  Google Scholar 

  35. Ramminger SJ et al (1999) P2Y2 receptor-mediated inhibition of ion transport in distal lung epithelial cells. Br J Pharmacol 128(2):293–300

    Article  PubMed  CAS  Google Scholar 

  36. Kunzelmann K, Schreiber R, Cook D (2002) Mechanisms for the inhibition of amiloride-sensitive Na+ absorption by extracellular nucleotides in mouse trachea. Pflugers Arch 444(1–2):220–226

    Article  PubMed  CAS  Google Scholar 

  37. Lehrmann H et al (2002) Luminal P2Y2 receptor-mediated inhibition of Na+ absorption in isolated perfused mouse CCD. J Am Soc Nephrol 13(1):10–18

    PubMed  CAS  Google Scholar 

  38. Pochynyuk O et al (2008) Paracrine regulation of the epithelial Na+ channel in the mammalian collecting duct by purinergic P2Y2 receptor tone. J Biol Chem 283(52):36599–36607

    Article  PubMed  CAS  Google Scholar 

  39. Pochynyuk O et al (2010) Dietary Na+ inhibits the open probability of the epithelial sodium channel in the kidney by enhancing apical P2Y2-receptor tone. FASEB J 24(6):2056–2065

    Article  PubMed  CAS  Google Scholar 

  40. Loffing J, Korbmacher C (2009) Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch 458(1):111–135

    Article  PubMed  CAS  Google Scholar 

  41. Firsov D et al (1996) Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci U S A 93(26):15370–15375

    Article  PubMed  CAS  Google Scholar 

  42. Butterworth MB (2010) Regulation of the epithelial sodium channel (ENaC) by membrane trafficking. Biochim Biophys Acta 1802(12):1166–1177

    PubMed  CAS  Google Scholar 

  43. Pochynyuk O et al (2008) Purinergic control of apical plasma membrane PI(4,5)P2 levels sets ENaC activity in principal cells. Am J Physiol Renal Physiol 294(1):F38–F46

    Article  PubMed  CAS  Google Scholar 

  44. O'Mullane LM, Cook DI, Dinudom A (2009) Purinergic regulation of the epithelial Na+ channel. Clin Exp Pharmacol Physiol 36(10):1016–1022

    Article  PubMed  CAS  Google Scholar 

  45. Zhang Y et al (2007) Basolateral P2X4-like receptors regulate the extracellular ATP-stimulated epithelial Na+ channel activity in renal epithelia. Am J Physiol Renal Physiol 292(6):F1734–F1740

    Article  PubMed  CAS  Google Scholar 

  46. Gorelik J et al (2005) Aldosterone acts via an ATP autocrine/paracrine system: the Edelman ATP hypothesis revisited. Proc Natl Acad Sci U S A 102(42):15000–15005

    Article  PubMed  CAS  Google Scholar 

  47. Cressman VL et al (1999) Effect of loss of P2Y(2) receptor gene expression on nucleotide regulation of murine epithelial Cl(−) transport. J Biol Chem 274(37):26461–26468

    Article  PubMed  CAS  Google Scholar 

  48. Ghanem E et al (2005) The role of epithelial P2Y2 and P2Y4 receptors in the regulation of intestinal chloride secretion. Br J Pharmacol 146(3):364–369

    Article  PubMed  CAS  Google Scholar 

  49. Robaye B et al (2003) Loss of nucleotide regulation of epithelial chloride transport in the jejunum of P2Y4-null mice. Mol Pharmacol 63(4):777–783

    Article  PubMed  CAS  Google Scholar 

  50. Wong AM et al (2009) Apical versus basolateral P2Y(6) receptor-mediated Cl(−) secretion in immortalized bronchial epithelia. Am J Respir Cell Mol Biol 40(6):733–745

    Article  PubMed  CAS  Google Scholar 

  51. Kellerman D et al (2008) Denufosol: a review of studies with inhaled P2Y(2) agonists that led to phase 3. Pulm Pharmacol Ther 21(4):600–607

    Article  PubMed  CAS  Google Scholar 

  52. Faria D, Schreiber R, Kunzelmann K (2009) CFTR is activated through stimulation of purinergic P2Y2 receptors. Pflugers Arch 457(6):1373–1380

    Article  PubMed  CAS  Google Scholar 

  53. Ishibashi K, Okamura K, Yamazaki J (2008) Involvement of apical P2Y2 receptor-regulated CFTR activity in muscarinic stimulation of Cl(−) reabsorption in rat submandibular gland. Am J Physiol Regul Integr Comp Physiol 294(5):R1729–R1736

    Article  PubMed  CAS  Google Scholar 

  54. Wong LB, Yeates DB (1992) Luminal purinergic regulatory mechanisms of tracheal ciliary beat frequency. Am J Respir Cell Mol Biol 7(4):447–454

    PubMed  CAS  Google Scholar 

  55. Davis CW, Dickey BF (2008) Regulated airway goblet cell mucin secretion. Annu Rev Physiol 70:487–512

    Article  PubMed  CAS  Google Scholar 

  56. Lazarowski ER, Boucher RC (2009) Purinergic receptors in airway epithelia. Curr Opin Pharmacol 9(3):262–267

    Article  PubMed  CAS  Google Scholar 

  57. Button B, Boucher RC (2008) Role of mechanical stress in regulating airway surface hydration and mucus clearance rates. Respir Physiol Neurobiol 163(1–3):189–201

    Article  PubMed  Google Scholar 

  58. Button B, Picher M, Boucher RC (2007) Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia. J Physiol 580(Pt. 2):577–592

    PubMed  CAS  Google Scholar 

  59. Tarran R et al (2005) Normal and cystic fibrosis airway surface liquid homeostasis. The effects of phasic shear stress and viral infections. J Biol Chem 280(42):35751–35759

    Article  PubMed  CAS  Google Scholar 

  60. Ma W et al (1999) Extracellular sodium regulates airway ciliary motility by inhibiting a P2X receptor. Nature 400(6747):894–897

    Article  PubMed  CAS  Google Scholar 

  61. Gunduz D et al (2003) ATP antagonism of thrombin-induced endothelial barrier permeability. Cardiovasc Res 59(2):470–478

    Article  PubMed  CAS  Google Scholar 

  62. Gunduz D et al (2006) Accumulation of extracellular ATP protects against acute reperfusion injury in rat heart endothelial cells. Cardiovasc Res 71(4):764–773

    Article  PubMed  CAS  Google Scholar 

  63. Noll T et al (1999) ATP reduces macromolecule permeability of endothelial monolayers despite increasing [Ca2+]i. Am J Physiol 276(6 Pt 2):H1892–H1901

    PubMed  CAS  Google Scholar 

  64. Jacobson JR et al (2006) Endothelial cell barrier enhancement by ATP is mediated by the small GTPase Rac and cortactin. Am J Physiol Lung Cell Mol Physiol 291(2):L289–L295

    Article  PubMed  CAS  Google Scholar 

  65. Kolosova IA et al (2005) Signaling pathways involved in adenosine triphosphate-induced endothelial cell barrier enhancement. Circ Res 97(2):115–124

    Article  PubMed  CAS  Google Scholar 

  66. Kolosova IA et al (2008) Protective effect of purinergic agonist ATPgammaS against acute lung injury. Am J Physiol Lung Cell Mol Physiol 294(2):L319–L324

    Article  PubMed  CAS  Google Scholar 

  67. Eltzschig HK et al (2003) Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J Exp Med 198(5):783–796

    Article  PubMed  CAS  Google Scholar 

  68. Praetorius HA, Spring KR (2003) Removal of the MDCK cell primary cilium abolishes flow sensing. J Membr Biol 191(1):69–76

    Article  PubMed  CAS  Google Scholar 

  69. Wu L et al (2007) Dual role of the TRPV4 channel as a sensor of flow and osmolality in renal epithelial cells. Am J Physiol Renal Physiol 293(5):F1699–F1713

    Article  PubMed  CAS  Google Scholar 

  70. Kottgen M et al (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182(3):437–447

    Article  PubMed  CAS  Google Scholar 

  71. Praetorius HA, Leipziger J (2009) Released nucleotides amplify the cilium-dependent, flow-induced [Ca2+]i response in MDCK cells. Acta Physiol (Oxf) 197(3):241–251

    Article  CAS  Google Scholar 

  72. Praetorius HA, Leipziger J (2008) Fluid flow sensing and triggered nucleotide release in epithelia. J Physiol 586(Pt 11):2669

    Article  PubMed  CAS  Google Scholar 

  73. Odgaard E, Praetorius HA, Leipziger J (2009) AVP-stimulated nucleotide secretion in perfused mouse medullary thick ascending limb and cortical collecting duct. Am J Physiol Renal Physiol 297(2):F341–F349

    Article  PubMed  CAS  Google Scholar 

  74. Le Hir M, Kaissling B (1993) Distribution and regulation of renal ecto-5′-nucleotidase: implications for physiological functions of adenosine. Am J Physiol 264(3 Pt 2):F377–F387

    PubMed  Google Scholar 

  75. Jensen ME et al (2007) Flow-induced [Ca2+]i increase depends on nucleotide release and subsequent purinergic signaling in the intact nephron. J Am Soc Nephrol 18(7):2062–2070

    Article  PubMed  CAS  Google Scholar 

  76. Collins DM, McCullough WT, Ellsworth ML (1998) Conducted vascular responses: communication across the capillary bed. Microvasc Res 56(1):43–53

    Article  PubMed  CAS  Google Scholar 

  77. Winter P, Dora KA (2007) Spreading dilatation to luminal perfusion of ATP and UTP in rat isolated small mesenteric arteries. J Physiol 582(Pt 1):335–347

    Article  PubMed  CAS  Google Scholar 

  78. Burnstock G (1999) Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction. J Anat 194(Pt 3):335–342

    Article  PubMed  CAS  Google Scholar 

  79. Yamamoto K et al (2000) P2X(4) receptors mediate ATP-induced calcium influx in human vascular endothelial cells. Am J Physiol Heart Circ Physiol 279(1):H285–H292

    PubMed  CAS  Google Scholar 

  80. Wang L et al (2002) P2 receptor expression profiles in human vascular smooth muscle and endothelial cells. J Cardiovasc Pharmacol 40(6):841–853

    Article  PubMed  CAS  Google Scholar 

  81. Yamamoto K et al (2000) Fluid shear stress activates Ca(2+) influx into human endothelial cells via P2X4 purinoceptors. Circ Res 87(5):385–391

    PubMed  CAS  Google Scholar 

  82. Bodin P, Bailey D, Burnstock G (1991) Increased flow-induced ATP release from isolated vascular endothelial cells but not smooth muscle cells. Br J Pharmacol 103(1):1203–1205

    PubMed  CAS  Google Scholar 

  83. Yamamoto K et al (2006) Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med 12(1):133–137

    Article  PubMed  CAS  Google Scholar 

  84. Liu C et al (2004) Extracellular ATP facilitates flow-induced vasodilatation in rat small mesenteric arteries. Am J Physiol Heart Circ Physiol 286(5):H1688–H1695

    Article  PubMed  CAS  Google Scholar 

  85. Yamamoto K et al (2007) Involvement of cell surface ATP synthase in flow-induced ATP release by vascular endothelial cells. Am J Physiol Heart Circ Physiol 293(3):H1646–H1653

    Article  PubMed  CAS  Google Scholar 

  86. Zhang Y et al (2011) Renal sodium transporter/channel expression and sodium excretion in P2Y2 receptor knockout mice fed a high-NaCl diet with/without aldosterone infusion. Am J Physiol Renal Physiol 300(3):F657–F668

    Article  PubMed  CAS  Google Scholar 

  87. Wang Z et al (2010) The purinergic receptor P2Y, G-protein coupled, 2 (P2RY2) gene associated with essential hypertension in Japanese men. J Hum Hypertens 24(5):327–335

    Article  PubMed  CAS  Google Scholar 

  88. Erlinge D, Burnstock G (2008) P2 receptors in cardiovascular regulation and disease. Purinergic Signal 4(1):1–20

    Article  PubMed  CAS  Google Scholar 

  89. Schluter H et al (1994) Diadenosine phosphates and the physiological control of blood pressure. Nature 367(6459):186–188

    Article  PubMed  CAS  Google Scholar 

  90. Hollah P et al (2001) A novel assay for determination of diadenosine polyphosphates in human platelets: studies in normotensive subjects and in patients with essential hypertension. J Hypertens 19(2):237–245

    Article  PubMed  CAS  Google Scholar 

  91. Jankowski V et al (2005) Uridine adenosine tetraphosphate: a novel endothelium- derived vasoconstrictive factor. Nat Med 11(2):223–227

    Article  PubMed  CAS  Google Scholar 

  92. Sprague RS et al (2003) Extracellular ATP signaling in the rabbit lung: erythrocytes as determinants of vascular resistance. Am J Physiol Heart Circ Physiol 285(2):H693–H700

    PubMed  CAS  Google Scholar 

  93. Sprague RS et al (2001) Impaired release of ATP from red blood cells of humans with primary pulmonary hypertension. Exp Biol Med (Maywood) 226(5):434–439

    CAS  Google Scholar 

  94. Greenberg B, Rhoden K, Barnes PJ (1987) Endothelium-dependent relaxation of human pulmonary arteries. Am J Physiol 252(2 Pt 2):H434–H438

    PubMed  CAS  Google Scholar 

  95. Trams EJ, Kauffman H, Burnstock GG (1980) A proposal for the role of ecto-enzymes and adenylates in traumatic shock. J Theor Biol 87:609–621

    Article  PubMed  CAS  Google Scholar 

  96. Sluyter R et al (2004) Extracellular ATP increases cation fluxes in human erythrocytes by activation of the P2X7 receptor. J Biol Chem 279(43):44749–44755

    Article  PubMed  CAS  Google Scholar 

  97. Bodin P, Burnstock G (1996) ATP-stimulated release of ATP by human endothelial cells. J Cardiovasc Pharmacol 27(6):872–875

    Article  PubMed  CAS  Google Scholar 

  98. Cosby K et al (2003) Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9(12):1498–1505

    Article  PubMed  CAS  Google Scholar 

  99. Ellsworth ML et al (1995) The erythrocyte as a regulator of vascular tone. Am J Physiol 269(6 Pt 2):H2155–H2161

    PubMed  CAS  Google Scholar 

  100. Yegutkin GG et al (2007) Intravascular ADP and soluble nucleotidases contribute to acute prothrombotic state during vigorous exercise in humans. J Physiol 579(Pt 2):553–564

    PubMed  CAS  Google Scholar 

  101. McMahon TJ et al (2002) Nitric oxide in the human respiratory cycle. Nat Med 8(7):711–717

    PubMed  CAS  Google Scholar 

  102. Bergfeld GR, Forrester T (1992) Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia. Cardiovasc Res 26(1):40–47

    Article  PubMed  CAS  Google Scholar 

  103. Sprague RS et al (2001) Participation of cAMP in a signal-transduction pathway relating erythrocyte deformation to ATP release. Am J Physiol Cell Physiol 281(4):C1158–C1164

    PubMed  CAS  Google Scholar 

  104. Touchman JW et al (2000) The genomic region encompassing the nephropathic cystinosis gene (CTNS): complete sequencing of a 200-kb segment and discovery of a novel gene within the common cystinosis-causing deletion. Genome Res 10(2):165–173

    Article  PubMed  CAS  Google Scholar 

  105. Wang L et al (2005) ADP acting on P2Y13 receptors is a negative feedback pathway for ATP release from human red blood cells. Circ Res 96(2):189–196

    Article  PubMed  CAS  Google Scholar 

  106. Guan Z, Osmond DA, Inscho EW (2007) P2X receptors as regulators of the renal microvasculature. Trends Pharmacol Sci 28(12):646–652

    Article  PubMed  CAS  Google Scholar 

  107. Inscho EW et al (2003) Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior. J Clin Invest 112(12):1895–1905

    PubMed  CAS  Google Scholar 

  108. Komlosi P, Fintha A, Bell PD (2005) Renal cell-to-cell communication via extracellular ATP. Physiology (Bethesda) 20:86–90

    Article  CAS  Google Scholar 

  109. Sun D et al (2001) Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci U S A 98(17):9983–9988

    Article  PubMed  CAS  Google Scholar 

  110. Brown R et al (2001) Abolished tubuloglomerular feedback and increased plasma renin in adenosine A1 receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol 281(5):R1362–R1367

    PubMed  CAS  Google Scholar 

  111. Castrop H et al (2004) Impairment of tubuloglomerular feedback regulation of GFR in ecto-5′-nucleotidase/CD73-deficient mice. J Clin Invest 114(5):634–642

    PubMed  CAS  Google Scholar 

  112. Thomson S et al (2000) Adenosine formed by 5′-nucleotidase mediates tubuloglomerular feedback. J Clin Invest 106(2):289–298

    Article  PubMed  CAS  Google Scholar 

  113. Komlosi P et al (2004) Macula densa basolateral ATP release is regulated by luminal [NaCl] and dietary salt intake. Am J Physiol Renal Physiol 286(6):F1054–F1058

    Article  PubMed  CAS  Google Scholar 

  114. Sipos A, Vargas S, Peti-Peterdi J (2010) Direct demonstration of tubular fluid flow sensing by macula densa cells. Am J Physiol Renal Physiol 299(5):F1087–F1093

    Article  PubMed  CAS  Google Scholar 

  115. Groschel-Stewart U et al (1999) P2X receptors in the rat duodenal villus. Cell Tissue Res 297(1):111–117

    Article  PubMed  CAS  Google Scholar 

  116. Hou M et al (2000) Cytokines induce upregulation of vascular P2Y(2) receptors and increased mitogenic responses to UTP and ATP. Arterioscler Thromb Vasc Biol 20(9):2064–2069

    Article  PubMed  CAS  Google Scholar 

  117. Paller MS, Schnaith EJ, Rosenberg ME (1998) Purinergic receptors mediate cell proliferation and enhanced recovery from renal ischemia by adenosine triphosphate. J Lab Clin Med 131(2):174–183

    Article  PubMed  CAS  Google Scholar 

  118. McDonald B et al (2010) Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330(6002):362–366

    Article  PubMed  CAS  Google Scholar 

  119. Kouzaki H et al (2011) The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. J Immunol 186(7):4375–4387

    Article  PubMed  CAS  Google Scholar 

  120. Nilsson J et al (2006) High glucose activates nuclear factor of activated T cells in native vascular smooth muscle. Arterioscler Thromb Vasc Biol 26(4):794–800

    Article  PubMed  CAS  Google Scholar 

  121. Nilsson-Berglund LM et al (2010) Nuclear factor of activated T cells regulates osteopontin expression in arterial smooth muscle in response to diabetes-induced hyperglycemia. Arterioscler Thromb Vasc Biol 30(2):218–224

    Article  PubMed  CAS  Google Scholar 

  122. Riegel AK et al (2011) Selective induction of endothelial P2Y6 nucleotide receptor promotes vascular inflammation. Blood 117(8):2548–2555

    Article  PubMed  CAS  Google Scholar 

  123. Grbic DM et al (2008) Intestinal inflammation increases the expression of the P2Y6 receptor on epithelial cells and the release of CXC chemokine ligand 8 by UDP. J Immunol 180(4):2659–2668

    PubMed  CAS  Google Scholar 

  124. Meis S et al (2010) NF546 [4,4′-(carbonylbis(imino-3,1-phenylene-carbonylimino-3,1-(4-methyl-phenyle ne)-carbonylimino))-bis(1,3-xylene-alpha, alpha’-diphosphonic acid) tetrasodium salt] is a non-nucleotide P2Y11 agonist and stimulates release of interleukin-8 from human monocyte-derived dendritic cells. J Pharmacol Exp Ther 332(1):238–247

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Öhman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Öhman, J., Erlinge, D. The touching story of purinergic signaling in epithelial and endothelial cells. Purinergic Signalling 8, 599–608 (2012). https://doi.org/10.1007/s11302-012-9316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-012-9316-5

Keywords

Navigation