Skip to main content
Log in

Amino acid variations resulting in functional and nonfunctional zebrafish P2X1 and P2X5.1 receptors

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Several zebrafish P2X receptors (zP2X1, zP2X2, and zP2X5.1) have been reported to produce little or no current although their mammalian orthologs produce functional homomeric receptors. We isolated new cDNA clones for these P2X receptors that revealed sequence variations in each. The new variants of zP2X1 and zP2X5.1 produced substantial currents when expressed by Xenopus oocytes, however the new variant of zP2X2 was still nonfunctional. zP2X2 lacks two lysine residues essential for ATP responsiveness in other P2X receptors; however introduction of these two lysines was insufficient to allow this receptor to function as a homotrimer. We also tested whether P2X signaling is required for myogenesis or synaptic communication at the zebrafish neuromuscular junction. We found that embryonic skeletal muscle expressed only one P2X receptor, P2X5.1. Antisense knockdown of P2X5.1 eliminated skeletal muscle responsiveness to ATP but did not prevent myogenesis or behaviors that require functional transmission at the neuromuscular junction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–f
Fig. 3a–c
Fig. 4a–d
Fig. 5a, b
Fig. 6a–f

Similar content being viewed by others

References

  1. Burnstock G (2007) Physiol Rev 87(2):659–797 doi:10.1152/physrev.00043.2006

    Article  PubMed  CAS  Google Scholar 

  2. Mulryan K, Gitterman DP, Lewis CJ, Vial C, Leckie BJ, Cobb AL et al (2000) Nature 403(6765):86–89 doi:10.1038/47495

    Article  PubMed  CAS  Google Scholar 

  3. Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L et al (2005) Science 310(5753):1495–1499

    Article  PubMed  CAS  Google Scholar 

  4. Sim JA, Chaumont S, Jo J, Ulmann L, Young MT, Cho K et al (2006) J Neurosci 26(35):9006–9009 doi:10.1523/JNEUROSCI.2370-06.2006

    Article  PubMed  CAS  Google Scholar 

  5. Kucenas S, Li Z, Cox JA, Egan TM, Voigt MM (2003) Neuroscience 121(4):935–945 doi:10.1016/S0306-4522(03)00566-9

    Article  PubMed  CAS  Google Scholar 

  6. Diaz-Hernandez M, Cox JA, Migita K, Haines W, Egan TM, Voigt MM (2002) Biochem Biophys Res Commun 295(4):849–853 doi:10.1016/S0006-291X(02)00760-X

    Article  PubMed  CAS  Google Scholar 

  7. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Dev Dyn 203(3):253–310

    PubMed  CAS  Google Scholar 

  8. Li H, Coghlan A, Ruan J, Coin LJ, Heriche JK, Osmotherly L et al (2006) Nucleic Acids Res 34(Database issue):D572–D580 doi:10.1093/nar/gkj118

    Article  PubMed  CAS  Google Scholar 

  9. Ruan J, Li H, Chen Z, Coghlan A, Coin LJ, Guo Y et al (2007) Nucleic Acids Res 36(Database issue):D735–D740 doi:10.1093/nar/gkm1005

    Article  PubMed  CAS  Google Scholar 

  10. Buss RR, Drapeau P (2000) J Neurophysiol 84(3):1545–1557

    PubMed  CAS  Google Scholar 

  11. Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 4th ed. University of Oregon Press, Eugene

    Google Scholar 

  12. Boue-Grabot E, Akimenko MA, Seguela P (2000) J Neurochem 75(4):1600–1607 doi:10.1046/j.1471-4159.2000.0751600.x

    Article  PubMed  CAS  Google Scholar 

  13. Egan TM, Cox JA, Voigt MM (2000) FEBS Lett 475(3):287–290 doi:10.1016/S0014-5793(00)01685-9

    Article  PubMed  CAS  Google Scholar 

  14. Norton WH, Rohr KB, Burnstock G (2000) Mech Dev 99(1–2):149–152 doi:10.1016/S0925-4773(00)00472-X

    Article  PubMed  CAS  Google Scholar 

  15. Appelbaum L, Skariah G, Mourrain P, Mignot E (2007) Brain Res 1174:66–75 doi:10.1016/j.brainres.2007.06.103

    Article  PubMed  CAS  Google Scholar 

  16. Rettinger J, Schmalzing G (2004) J Biol Chem 279(8):6426–6433 doi:10.1074/jbc.M306987200

    Article  PubMed  CAS  Google Scholar 

  17. North RA (2002) Physiol Rev 82(4):1013–1067

    PubMed  CAS  Google Scholar 

  18. Clyne JD, Wang LF, Hume RI (2002) J Neurosci 22(10):3873–3880

    PubMed  CAS  Google Scholar 

  19. Ennion SJ, Evans RJ (2002) Mol Pharmacol 61(2):303–311 doi:10.1124/mol.61.2.303

    Article  PubMed  CAS  Google Scholar 

  20. Wilkinson WJ, Jiang LH, Surprenant A, North RA (2006) Mol Pharmacol 70(4):1159–1163 doi:10.1124/mol.106.026658

    Article  PubMed  CAS  Google Scholar 

  21. Marquez-Klaka B, Rettinger J, Bhargava Y, Eisele T, Nicke A (2007) J Neurosci 27(6):1456–1466 doi:10.1523/JNEUROSCI.3105-06.2007

    Article  PubMed  CAS  Google Scholar 

  22. Roberts JA, Digby HR, Kara M, El Ajouz S, Sutcliffe MJ, Evans RJ (2008) J Biol Chem 283:20126–20136

    Article  PubMed  CAS  Google Scholar 

  23. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) Science 272(5262):735–738

    Article  PubMed  CAS  Google Scholar 

  24. Kolb HA, Wakelam MJ (1983) Nature 303(5918):621–623 doi:10.1038/303621a0

    Article  PubMed  CAS  Google Scholar 

  25. Hume RI, Honig MG (1986) J Neurosci 6(3):681–690

    PubMed  CAS  Google Scholar 

  26. Thomas SA, Hume RI (1990) J Gen Physiol 95(4):569–590 doi:10.1085/jgp.95.4.569

    Article  PubMed  CAS  Google Scholar 

  27. Meyer MP, Groschel-Stewart U, Robson T, Burnstock G (1999) Dev Dyn 216(4/5):442–449

    Article  PubMed  CAS  Google Scholar 

  28. Ryten M, Hoebertz A, Burnstock G (2001) Dev Dyn 221(3):331–341 doi:10.1002/dvdy.1147

    Article  PubMed  CAS  Google Scholar 

  29. Soto F, Krause U, Borchardt K, Ruppelt A (2003) FEBS Lett 533(1–3):54–58 doi:10.1016/S0014-5793(02)03751-1

    Article  PubMed  CAS  Google Scholar 

  30. Ruppelt A, Ma W, Borchardt K, Silberberg SD, Soto F (2001) J Neurochem 77(5):1256–1265 doi:10.1046/j.1471-4159.2001.00348.x

    Article  PubMed  CAS  Google Scholar 

  31. Ryten M, Dunn PM, Neary JT, Burnstock G (2002) J Cell Biol 158(2):345–355 doi:10.1083/jcb.200202025

    Article  PubMed  CAS  Google Scholar 

  32. Ryten M, Yang SY, Dunn PM, Goldspink G, Burnstock G (2004) FASEB J 18(12):1404–1406

    PubMed  CAS  Google Scholar 

  33. Sandona D, Danieli-Betto D, Germinario E, Biral D, Martinello T, Lioy A et al (2005) FASEB J 19(9):1184–1186

    PubMed  CAS  Google Scholar 

  34. Ryten M, Koshi R, Knight GE, Turmaine M, Dunn P, Cockayne DA et al (2007) Neuroscience 148(3):700–711 doi:10.1016/j.neuroscience.2007.06.050

    Article  PubMed  CAS  Google Scholar 

  35. Araya R, Riquelme MA, Brandan E, Saez JC (2004) Brain Res Brain Res Rev 47(1–3):174–188 doi:10.1016/j.brainresrev.2004.06.003

    Article  PubMed  CAS  Google Scholar 

  36. Saint-Amant L, Drapeau P (1998) J Neurobiol 37(4):622–632

    Article  PubMed  CAS  Google Scholar 

  37. Ennion S, Hagan S, Evans RJ (2000) J Biol Chem 275(38):29361–29367 doi:10.1074/jbc.M003637200

    Article  PubMed  CAS  Google Scholar 

  38. Jiang LH, Rassendren F, Surprenant A, North RA (2000) J Biol Chem 275(44):34190–34196 doi:10.1074/jbc.M005481200

    Article  PubMed  CAS  Google Scholar 

  39. Buchthal F, Folkow B (1944) Acta Physiol Scand 8:312–316

    Article  CAS  Google Scholar 

  40. Hume RI, Thomas SA (1988) J Physiol 406:503–524

    PubMed  CAS  Google Scholar 

  41. Bo X, Schoepfer R, Burnstock G (2000) J Biol Chem 275(19):14401–14407 doi:10.1074/jbc.275.19.14401

    Article  PubMed  CAS  Google Scholar 

  42. Jiang T, Yeung D, Lien CF, Gorecki DC (2005) Neuromuscul Disord 15(3):225–236 doi:10.1016/j.nmd.2004.11.008

    Article  PubMed  Google Scholar 

  43. Banachewicz W, Suplat D, Krzeminski P, Pomorski P, Baranska J (2005) Purinergic Signal 1(3):249–257 doi:10.1007/s11302-005-6311-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Kuwada and Hume labs, as well as Shawn Xu, Haoxing Xu, Geoffrey Murphy and Michael Uhler for helpful comments on the manuscript. SEL was supported in part by PHS training grant MH014279 (Huda Akil, PI). This work was supported by NSF grant IOS-0725976 and PHS grant NS036587 to JYK and NSF grant IBN-0077634 and PHS grant NS051001 to RIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard I. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Low, S.E., Kuwada, J.Y. & Hume, R.I. Amino acid variations resulting in functional and nonfunctional zebrafish P2X1 and P2X5.1 receptors. Purinergic Signalling 4, 383–392 (2008). https://doi.org/10.1007/s11302-008-9124-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-008-9124-0

Keywords

Navigation