Skip to main content
Log in

Draft genome of Santalum album L. provides genomic resources for accelerated trait improvement

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Sandalwood (Santalum album L.) is a valuable commodity in the international trade due to its use in fragrance and essential oil industries. In the present study, a draft genome of S. album representing the natural population from Kerala, India, was sequenced and assembled into 74,900 major scaffolds with N50 of 12,068 bp and the estimated genome size was 286 Mb. A total of 37,500 genes were predicted including 30 genes from terpene synthase gene family. Repetitive sequence was mined and spanned 12.52% of the sandalwood genome. Domain analysis of predicted proteins revealed that transcription factors and kinases were the major category of proteins followed by ARM repeat proteins and WD domain proteins. The draft genome encoded for 574 miRNAs belonging to 23 families including two miRNAs associated with terpenoid biosynthesis pathway. Further, the consensus chloroplast genome of 147.25 kb size was reconstructed and phylogenetic analysis with 40 plastid genes grouped members of Santalales with Asterids in accordance with its taxonomic status recommended in APG III and APG IV. Variant calling was conducted against the published genome and a total of 1,191,838 (0.42%) SNPs and 98,312 (0.034%) InDels were predicted in the present genome. The draft genome presented in this study has provided additional genomic resource for S. album for subsequent research in population diversity estimation and accelerated trait breeding in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 15 Jan 2018

  • APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. APG III. Bot J Linn Soc 161:105–121

    Google Scholar 

  • APG IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20

    Google Scholar 

  • Aronesty E (2013) Comparison of Sequencing Utility Programs. Open Bioinf J 7:1–8

    Google Scholar 

  • Arun Kumar AN, Joshi G, Mohan Ram HY (2012) Sandalwood: history, uses, present status and the future. Curr Sci 103:1408–1416

    Google Scholar 

  • Asif M, Mantri SS, Sharma A, Srivastava A, Trivedi I, Gupta P, Mohanty CS, Sawant SV, Tuli R (2010) Complete sequence and organisation of the Jatropha curcas (Euphorbiaceae) chloroplast genome. Tree Genet Genomes 6:941–952

    Google Scholar 

  • Baldovini N, Delasalle C, Joulain D (2011) Phytochemistry of the heartwood from fragrant Santalum species: a review. Flavour Frag J 26:7–26

    CAS  Google Scholar 

  • Barghini E, Natali L, Giordani T, Cossu RM, Scalabrin S, Cattonaro F, imkova H, Vrana J, Dole el J, Morgante M, Cavallini A (2015) LTR retrotransposon dynamics in the evolution of the olive (Olea europaea) genome. DNA Res 22:91–100

    CAS  PubMed  Google Scholar 

  • Biswas S, Hazra S, Chattopadhyay S (2016) Identification of conserved miRNAs and their putative target genes in Podophyllum hexandrum (Himalayan Mayapple). Plant Gene 6:82–89

    CAS  Google Scholar 

  • Brennan P, Merlin M (1991) Biogeography and traditional use of Santalum in the Pacific region. In: McKinell FH (ed) Sandalwood in the Pacific region, Australian Center for International Agriculture Research Proceedings, pp 30–39

  • Bulgakov VP, Avramenko TV (2015) New opportunities for the regulation of secondary metabolism in plants: focus on microRNAs. Biotechnol Lett 37:1719–1727

    CAS  PubMed  Google Scholar 

  • Celedon JM, Chiang A, Yuen MM, Diaz-Chavez ML, Madilao LL, Finnegan PM, Barbour EL, Bohlmann J (2016) Heartwood-specific transcriptome and metabolite signatures of tropical sandalwood (Santalum album) reveal the final step of (Z)-santalol fragrance biosynthesis. Plant J 86:289–299

    CAS  PubMed  Google Scholar 

  • Choudhuri S (2014) Bioinformatics for beginners: genes, genomes, molecular evolution, databases and analytical tools. Academic Press, Elsevier Inc., USA

    Google Scholar 

  • Cossu RM, Buti M, Giordani T, Cavallini A, Natali L (2009) A survey of LTR-retrotransposons in the Populus trichocarpa genome. In Proceedings of the 53rd Italian Society of Agricultural Genetics Annual Congress, Torino, Italy

  • Cossu RM, Buti M, Giordani T, Natali L, Cavallini A (2012) A computational study of the dynamics of LTR retrotransposons in the Populus trichocarpa genome. Tree Genet Genomes 8:61–75

    Google Scholar 

  • Daniell H, Lin C-S, Yu M, Chang W-J (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17:134

    PubMed  PubMed Central  Google Scholar 

  • Der JP, Nickrent DL (2008) A molecular phylogeny of Santalaceae (Santalales). Syst Bot 331:107–116

    Google Scholar 

  • Diaz-Chavez ML, Moniodis J, Madilao LL, Jancsik S, Keeling CI, Barbour EL, Ghisalberti EL, Plummer JA, Jones CG, Bohlmann J (2013) Biosynthesis of sandalwood oil: Santalum album CYP76F cytochromes P450 produce santalols and bergamotol. PLoS One 8:e75053

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan R, Li Y, Li C, Zhang Y (2015) Differential microRNA analysis of glandular trichomes and young leaves in Xanthium strumarium L. reveals their putative roles in regulating terpenoid biosynthesis. PLoS One 10:e0139002

    PubMed  PubMed Central  Google Scholar 

  • Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    CAS  PubMed  Google Scholar 

  • Fuentes-Pardo AP, Ruzzante DE (2017) Whole-genome sequencing approaches for conservation biology: advantages, limitations and practical recommendations. Mol Ecol 26:5369–5406

    CAS  PubMed  Google Scholar 

  • Griffiths-Jones S (2006) miRBase: the microRNA sequence database. Methods Mol Biol 342:129–138

    CAS  PubMed  Google Scholar 

  • Gupta P, Varshney R (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    CAS  Google Scholar 

  • Gupta OP, Karkute SG, Banerjee S, Meena NL, Dahuja A (2017) Contemporary understanding of miRNA-based regulation of secondary metabolites biosynthesis in plants. Front Plant Sci 8:374

    PubMed  PubMed Central  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Han X-M, Wang Y-M, Liu Y-J (2017) The complete chloroplast genome sequence of Populus wilsonii and its phylogenetic analysis. Mitochondrial DNA Part B 2:932–933

    PubMed  PubMed Central  Google Scholar 

  • Harbaugh DT, Baldwin BG (2007) Phylogeny and biogeography of the sandalwoods (Santalum, Santalaceae): repeated dispersals throughout the Pacific. Am J Bot 94:1028–1040

    PubMed  Google Scholar 

  • Harrow J, Nagy A, Reymond A, Alioto T, Patthy L, Antonarakis SE, Guigó R (2009) Identifying protein-coding genes in genomic sequences. Genome Biol 10:201

    PubMed  PubMed Central  Google Scholar 

  • Hatem A, Bozdag D, Toland AE, Catalyürek ÜV (2013) Benchmarking short sequence mapping tools. BMC Bioinformatics 14:184

    PubMed  PubMed Central  Google Scholar 

  • Hawkins JS, Kim H, Nason JD, Wing RA, Wendel J (2006) Differential lineage specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Wang J, Yang Y, Fan C, Chen J (2017) Phylogenomic analysis and dynamic evolution of chloroplast genomes in Salicaceae. Front Plant Sci 8:1050

    PubMed  PubMed Central  Google Scholar 

  • Jain SH, Angadi VG, Rajeevalochan AN, Shankaranarayana KH, Theagarajan KS, Rangaswamy CR (1998) Identification of provenances of sandal in India for genetic conservation. In: Radomiljac AM, Aanathapadmanabha HS, Welbourn RM, Satyanarayana Rao K (eds) Sandal and its products. ACIAR, Canberra, Australia, pp 117–120

    Google Scholar 

  • Jones CG, Ghisalberti EL, Plummer JA, Barbour EL (2006) Quantitative co-occurrence of sesquiterpenes; a tool for elucidating their biosynthesis in Indian sandalwood, Santalum album. Phytochemistry 67:2463–2468

    CAS  PubMed  Google Scholar 

  • Jones CG, Keeling CI, Ghisalberti EL, Barbour EL, Plummer JA, Bohlmann J (2008) Isolation of cDNAs and functional characterisation of two multi-product terpene synthase enzymes from sandalwood, Santalum album L. Arch Biochem Biophys 477:121–130

    CAS  PubMed  Google Scholar 

  • Jones CG, Moniodis J, Zulak KG, Scaffidi A, Plummer JA, Ghisalberti EL, Barbour EL, Bohlmann J (2011) Sandalwood fragrance biosynthesis involves sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases. J Biol Chem 286:17445–17454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Google Scholar 

  • Kulkarni HD, Srimathi RA (1982) Variation in foliar characteristics in sandal. In: Khosla PK (ed) Biometric analysis in improvement of forest biomass. International Book Distributors, Dehra Dun, India, pp 63–69

    Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le C-T, Liu B, Barrett RL, Lu L-M, Wen J, Chen Z-D (2018) Phylogeny and a new tribal classification of Opiliaceae (Santalales) based on molecular and morphological evidence. J Syst Evol 56:56–66

    Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    PubMed  PubMed Central  Google Scholar 

  • Li ZH, Zhu J, Yang YX, Yang J, He JW, Zhao GF (2016) The complete plastid genome of Bunge’s pine Pinus bungeana (Pinaceae). Mitochondrial DNA A DNA Mapp Seq Anal 27:2971–2972

    CAS  PubMed  Google Scholar 

  • Li Z, Long H, Zhang L, Liu Z, Cao H, Shi M, Tan X (2017) The complete chloroplast genome sequence of tung tree (Vernicia fordii): organization and phylogenetic relationships with other angiosperms. Sci Rep 7:1869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lister R, Gregory B, Ecker J (2009) Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. Curr Opin Plant Biol 12:107–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe TM, Chan PP (2016) tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahesh HB, Subba P, Advani J, Shirke MD, Loganathan RM, Chandana S, Shilpa S, Chatterjee O, Pinto SM, Prasad K, Gowda M (2018) Multi-omics driven assembly and annotation of the sandalwood (Santalum album) genome. Plant Physiol. https://doi.org/10.1104/pp.17.01764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on plant breeding. Int J Plant Genomics 2012:1–11. https://doi.org/10.1155/2012/728398

    Article  CAS  Google Scholar 

  • Marcon HS, Domingues DS, Silva JC, Borges RJ, Matioli FF, Fontes MR, Marino CL (2015) Transcriptionally active LTR retrotransposons in Eucalyptus genus are differentially expressed and insertionally polymorphic. BMC Plant Biol 15:198

    PubMed  PubMed Central  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Google Scholar 

  • Mascagni F, Giordani T, Ceccarelli M, Cavallini A, Natali L (2017) Genome-wide analysis of LTR-retrotransposon diversity and its impact on the evolution of the genus Helianthus (L.). BMC Genomics 18:634

    PubMed  PubMed Central  Google Scholar 

  • McCarthy FM, Bridges SM, Wang N, Magee GB, Williams WP, Luthe DS, Burgess SC (2007) AgBase: a unified resource for functional analysis in agriculture. Nucleic Acids Res 35:D599–D603

    CAS  PubMed  Google Scholar 

  • Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A (2018) Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 34:i142–i150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Misra BB, Dey S (2013) Developmental variations in sesquiterpenoid biosynthesis in East Indian sandalwood tree (Santalum album L.). Trees 27:1071–1086

    CAS  Google Scholar 

  • Mohammad N, Mahesh S, Kumar P, Ansari SA (2012) Genotyping of Santalum album L. accessions through cross-species transferability of SSR markers of Santalum austrocaledonicum and Santalum insulare. Sandalwood Research Newsletter 27:1–5

    Google Scholar 

  • Moniodis J, Jones CG, Barbour EL, Plummer JA, Ghisalberti EL, Bohlmann J (2015) The transcriptome of sesquiterpenoid biosynthesis in heartwood xylem of Western Australian sandalwood (Santalum spicatum). Phytochemistry 113:79–86

    CAS  PubMed  Google Scholar 

  • Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE (2010) Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci 107:4623–4628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moriya Y, Itoh M, Okuda S, Yoshizawa A, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185

    PubMed  PubMed Central  Google Scholar 

  • Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J et al (2014) The genome of Eucalyptus grandis. Nature 5410:356–362

    Google Scholar 

  • Nickrent DL, Malecot V (2001) A molecular phylogeny of Santalales. In: Fer A, Thalouarn P, Joel DM, Musselman LJ, Parker C, Verkleij JAC (eds) Proceedings of 7th International Parasitic Weed Symposium, Nantes, pp 69–74

  • Nussbaumer T, Martis MM, Roessner SK, Pfeifer M, Bader KC, Sharma S, Gundlach H, Spannagl M (2013) MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res 41:D1144–D1151

    CAS  PubMed  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hällman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Käller M, Luthman J, Lysholm F, Niittylä T, Olson Å, Rilakovic N, Ritland C, Rosselló JA, Sena J, Svensson T, Talavera-López C, Theißen G, Tuominen H, Vanneste K, Wu ZQ, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Garcia Gil R, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Lee Thompson S, van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584

    CAS  PubMed  Google Scholar 

  • Patel DM, Fougat RS, Sakura AA, Kumar S, Kumar M, Mistry JG (2016) Detection of genetic variation in sandalwood using various DNA markers. 3 Biotech 6:55

    PubMed  PubMed Central  Google Scholar 

  • Rani A, Ravikumar P, Reddy MD, Kush A (2013) Molecular regulation of santalol biosynthesis in Santalum album L. Gene 527:642–648

    CAS  PubMed  Google Scholar 

  • Rao MN, Ganeshaiah KN, Uma Shaanker R (2007) Assessing threats and mapping sandal (Santalum album L.) resources in peninsular India: identification of genetic hot-spot for in situ conservation. Conserv Genet 8:925–935

    CAS  Google Scholar 

  • Rashkow ED (2014) Perfumed the axe that laid it low: the endangerment of sandalwood in southern India. Indian Econ Soc Hist Rev 51:41–70

    Google Scholar 

  • Ravi V, Khurana JP, Tyagi AK, Khurana P (2006) The chloroplast genome of mulberry: complete nucleotide sequence, gene organization and comparative analysis. Tree Genet Genomes 3:49–59

    Google Scholar 

  • Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG (2014) From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 14:23

    PubMed  PubMed Central  Google Scholar 

  • Saifi M, Nasrullah N, Ahmad MM, Ali A, Khan JA, Abdin MZ (2015) In silico analysis and expression profiling of miRNAs targeting genes of steviol glycosides biosynthetic pathway and their relationship with steviol glycosides content in different tissues of Stevia rebaudiana. Plant Physiol Biochem 94:57–64

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Salojärvi J, Smolander OP, Nieminen K, Rajaraman S, Safronov O, Safdari P, Lamminmäki A, Immanen J, Lan T, Tanskanen J, Rastas P, Amiryousefi A, Jayaprakash B, Kammonen JI, Hagqvist R, Eswaran G, Ahonen VH, Serra JA, Asiegbu FO, de Dios Barajas-Lopez J, Blande D, Blokhina O, Blomster T, Broholm S, Brosché M, Cui F, Dardick C, Ehonen SE, Elomaa P, Escamez S, Fagerstedt KV, Fujii H, Gauthier A, Gollan PJ, Halimaa P, Heino PI, Himanen K, Hollender C, Kangasjärvi S, Kauppinen L, Kelleher CT, Kontunen-Soppela S, Koskinen JP, Kovalchuk A, Kärenlampi SO, Kärkönen AK, Lim KJ, Leppälä J, Macpherson L, Mikola J, Mouhu K, Mähönen AP, Niinemets Ü, Oksanen E, Overmyer K, Palva ET, Pazouki L, Pennanen V, Puhakainen T, Poczai P, Possen BJHM, Punkkinen M, Rahikainen MM, Rousi M, Ruonala R, van der Schoot C, Shapiguzov A, Sierla M, Sipilä TP, Sutela S, Teeri TH, Tervahauta AI, Vaattovaara A, Vahala J, Vetchinnikova L, Welling A, Wrzaczek M, Xu E, Paulin LG, Schulman AH, Lascoux M, Albert VA, Auvinen P, Helariutta Y, Kangasjärvi J (2017) Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nat Genet 49:904–912

    PubMed  Google Scholar 

  • Saxena RK, Edwards D, Varshney RK (2014) Structural variations in plant genomes. Brief Funct Genomics 13:296–307

    PubMed  PubMed Central  Google Scholar 

  • Shang C, Du FK, Yin K, Zhang Z (2016) The complete chloroplast genome of Cathay Poplar: Poplus cathayana Rehder. Mitochondrial DNA 1:86–87

    PubMed  PubMed Central  Google Scholar 

  • Shashidhara G, Hema MV, Koshy B, Farooqi AA (2003) Assessment of genetic diversity and identification of core collection in sandalwood germplasm using RAPDs. J Hortic Sci Biotechnol 78:528–536

    CAS  Google Scholar 

  • Silva-Junior OB, Faria DA, Grattapaglia D (2015) A flexible multi-species genome-wide 60K SNP chip developed from pooled resequencing of 240 Eucalyptus tree genomes across 12 species. New Phytol 206:1527–1540

    CAS  PubMed  Google Scholar 

  • Silva-Junior OB, Grattapaglia D, Novaes E, Collevatti RG (2018) Design and evaluation of a sequence capture system for genome-wide SNP genotyping in highly heterozygous plant genomes: a case study with a keystone Neotropical hardwood tree genome. DNA Res 25:535–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sims D, Sudbery I, Ilott NE, Heger A (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 15:121–132

    CAS  PubMed  Google Scholar 

  • Singh N, Srivastava S, Shasany AK, Sharma A (2016a) Identification of miRNAs and their targets involved in the secondary metabolic pathways of Mentha spp. Comput Biol Chem 64:154–162

    CAS  PubMed  Google Scholar 

  • Singh N, Srivastava S, Sharma A (2016b) Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene 575:570–576

    CAS  PubMed  Google Scholar 

  • Slavov GT, DiFazio SP, Martin J, Schackwitz W, Muchero W, Rodgers-Melnick E et al (2012) Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa. New Phytol 196:713–725

    CAS  PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WJ et al (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461

    Google Scholar 

  • Soltis D, Soltis P, Endress P, Chase MW, Manchester S, Judd W, Majure L, Mavrodiev E (2018) Phylogeny and evolution of the angiosperms. University of Chicago Press

  • Song Y, Dong W, Liu B, Xu C, Yao X, Gao J, Corlett RT (2015) Comparative analysis of complete chloroplast genome sequences of two tropical trees Machilus yunnanensis and Machilus balansae in the family Lauraceae. Front Plant Sci 6:662

    PubMed  PubMed Central  Google Scholar 

  • Srivastava PL, Daramwar PP, Krithika R, Pandreka A, Shankar SS, Thulasiram HV (2015) Functional characterization of novel sesquiterpene synthases from Indian Sandalwood, Santalum album. Sci Rep 5:10095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su H-J, Hu J-M, Anderson FE, Der JP, Nickrent DL (2015) Phylogenetic relationships of Santalales with insights into the origins of holoparasitic Balanophoraceae. Taxon 64:491–506

    Google Scholar 

  • Suma TB, Balasundaran M (2003) Isozyme variation in five provenances of Santalum album in India. Aust J Bot 51:243–249

    CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tarver JE, Sperling EA, Nailor A, Heimberg AM, Robinson JM, King BL, Pisani D, Donoghue PC, Peterson KJ (2013) MiRNAs: small genes with big potential in metazoan phylogenetics. Mol Biol Evol 30:2369–2382

    CAS  PubMed  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch SR (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson LAJ (2008) Revitalizing Pacific sandalwood production. Non-Wood News 17:3–4

    Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, dePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    CAS  PubMed  Google Scholar 

  • Vashisht I, Mishra P, Pal T, Chanumolu S, Singh TR, Chauhan RS (2015) Mining NGS transcriptomes for miRNAs and dissecting their role in regulating growth, development, and secondary metabolites production in different organs of a medicinal herb, Picrorhiza kurroa. Planta 241:1255–1268

    CAS  PubMed  Google Scholar 

  • Vitte C, Fustier MA, Alix K, Tenaillon MI (2014) The bright side of transposons in crop evolution. Brief Funct Genomics 13:276–295

    PubMed  Google Scholar 

  • Volff JN (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 28:913–922

    CAS  PubMed  Google Scholar 

  • Wang W, Wei Z, Lam TW, Wang J (2011) Next generation sequencing has lower sequence coverage and poorer SNP-detection capability in the regulatory regions. Sci Rep 1:55

    PubMed  PubMed Central  Google Scholar 

  • Wegrzyn JL, Lin BY, Zieve JJ, Dougherty WM, Martínez-García PJ et al (2013) Insights into the loblolly pine genome: characterization of BAC and fosmid sequences. PLoS One 8:e72439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel JF, Jackson SA, Meyers BC, Wing RA (2016) Evolution of plant genome architecture. Genome Biol 17:1–14

    Google Scholar 

  • Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S et al (2014) Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci U S A 111:E4859–E4868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willis KJ (2017) State of the world’s plants 2017. Royal Botanic Gardens, Kew, London

    Google Scholar 

  • Xin-Hua Z, Teixeira da Silva JA, Ma G-H (2010) Karyotype analysis of Santalum album L. Caryologia 63:142–148

    Google Scholar 

  • Yasodha R, Vasudeva R, Balakrishnan S, Sakthi AR, Nicodemus A, Nagarajan B, Balaji R, Bachpai VKW, Pillai C, Dev SA (2018) Draft genome of a high value tropical timber tree, teak (Tectona grandis L. f): insights into SSR diversity, phylogeny and conservation. DNA Res. https://doi.org/10.1093/dnares/dsy013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:293–297

    Google Scholar 

  • Yin H, Du J, Wu J, Wei S, Xu Y, Tao S, Wu J, Zhang S (2015) Genome-wide annotation and comparative analysis of long terminal repeat retrotransposons between pear species of P. bretschneideri and P. communis. Sci Rep 5:17644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu ZX, Wang LJ, Zhao B, Shan CM, Zhang YH, Chen DF, Chen XY (2014) Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Mol Plant 8:98–110

    PubMed  Google Scholar 

  • Zeng L, Zhang Q, Sun R, Kong H, Zhang N, Ma H (2014) Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nat Commun 5:4956

    CAS  PubMed  Google Scholar 

  • Zhang QJ, Gao LZ (2016) The complete chloroplast genome sequence of desert poplar (Populus euphratica). Mitochondrial DNA 27:721–723

    CAS  PubMed  Google Scholar 

  • Zhang Y, Du L, Liu A, Chen J, Wu L, Hu W, Zhang MW, Kim K, Lee S-C, Yang T-J, Wang Y (2016) The complete chloroplast genome sequences of five Epimedium species: lights into phylogenetic and taxonomic analyses. Front Plant Sci 7:306

    PubMed  PubMed Central  Google Scholar 

  • Zhou D, Zhou X, Ling Y, Zhang Z, Su Z (2010) AgriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Indian Council of Forestry Research and Education, Dehra Dun, India for funding the research work.

Data archiving statement

The raw sequence reads of whole genome is deposited in the NCBI SRA database with accession number SRP145575.

Funding

This study was funded by Indian Council of Forestry Research and Education, Dehra Dun, India.

Author information

Authors and Affiliations

Authors

Contributions

MGD conceived, planned, designed the experiments, and finalized the manuscript; KU conducted the genome assembly and annotation; SAD and SB conducted the SSR genotyping and phylogenetic analysis. All authors have contributed towards manuscript writing and read and approved the final manuscript.

Corresponding author

Correspondence to Modhumita Ghosh Dasgupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Y. Tsumura

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Tables 1, 2, 3, 5

(DOCX 30 kb)

Supplementary Table 4

(XLSX 116 kb)

Supplementary Table 6

(XLSX 10422 kb)

Supplementary File 1

Variants (SNPs and InDels) predicted across the two draft genomes of S. album (VCF 238010 kb)

Supplementary Figures 1, 2, 3

(DOCX 523 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, M.G., Ulaganathan, K., Dev, S.A. et al. Draft genome of Santalum album L. provides genomic resources for accelerated trait improvement. Tree Genetics & Genomes 15, 34 (2019). https://doi.org/10.1007/s11295-019-1334-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-019-1334-9

Keywords

Navigation