Skip to main content
Log in

Intraspecific discrimination study of wild cherry populations from North-Western Turkey by DNA barcoding approach

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Wild cherry (Prunus avium L.) is a plant widely distributed around the world that possesses a great economic value. Indeed, it represents both a fruit source and one of the most important European hardwood species. For this reason, in order to obtain information about Turkish authoctonous P. avium germplasm and favor wood management policies and preservation strategies, we investigated the phylogenetic relationships existing among seven wild cherry populations (a total of 139 individuals) located in Northern Turkey using DNA barcoding. For each specimen, in detail, we sequenced a nuclear one (ITS) and two plastidial (trnH-psbA and matK) genes, to identify nucleotide polymorphisms, hypervariable genetic regions, and mutation events. Applying neighbor-joining method and genetic structure analysis, a high rate of crossbreeding among stands was revealed, except for one population (Gölcük) whose molecular profile was less similar to the others. In general, we observed that ITS was the most informative marker, suggesting it as a good candidate for P. avium intraspecific study. We conclude that DNA barcode technique, usually applied for species identification, may be also used as a scientific tool for the detection of plant biodiversity at population level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29(3):417–434

    Article  CAS  PubMed  Google Scholar 

  • Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard 82:247–277

    Article  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2004) GenBank: update. Nucleic Acids Res 32(Database issue):D23–D36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bortiri E, Oh SH, Jiang J, Baggett S, Granger A, Weeks C, Parfitt DE (2001) Phylogeny and systematics of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL-trnF spacer DNA. Syst Bot 26(4):797–807

    Google Scholar 

  • Bruni I, De Mattia F, Galimberti A, Galasso G, Banfi E, Casiraghi M, Labra M (2010) Identification of poisonous plants by DNA barcoding approach. Int J Legal Med 124(6):595–603

    Article  PubMed  Google Scholar 

  • Bruni I, De Mattia F, Martellos S, Galimberti A, Savadori P, Casiraghi M, Labra M (2012) DNA barcoding as an effective tool in improving a digital plant identification system: a case study for the area of Mt Valerio, Trieste (NE Italy). PLoS One 7(9):e43256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casiraghi M, Labra M, Ferri E, Galimberti A, De Mattia F (2010) DNA barcoding: a six-question tour to improve users’ awareness about the method. Brief Bioinform 11(4):440–453

    Article  CAS  PubMed  Google Scholar 

  • Chiej R (1984) MacDonald encyclopedia of medicinal plants, London

  • De Rogatis A, Ferrazzini D, Ducci F, Guerri S, Carnevale S, Belletti P (2013) Genetic variation in Italian wild cherry (Prunus avium L) as characterized by nSSR markers. Forestry 86(3):391–400

    Article  Google Scholar 

  • Dong W, Liu J, Yu J, Wang L, Zhou S (2012) Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS One 7(4):e35071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno. Conserv Genet Res 4:359–361

    Article  Google Scholar 

  • Ercisli S (2004) A short review of the fruit germplasm resources of Turkey. Genet Resour Crop Evol 51(4):419–435

    Article  Google Scholar 

  • Erickson DL, Spouge J, Resch A, Weigt LA, Kress JW (2008) DNA barcoding in land plants: developing standards to quantify and maximize success. Taxon 57(4):1304–1316

    Article  PubMed  PubMed Central  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fazekas AJ (2008) Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS One 3:2802

    Article  Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Felsenstein J (2005) PHYLIP (phylogeny inference package) version 3.6

  • Fernandez i, Marti A, Athanson B, Koepke T, Font i, Forcada C, Dhingra A, Oraguzie N (2012) Genetic diversity and relatedness of sweet cherry (Prunus avium L.) cultivars based on single nucleotide polymorphic markers. Front Plant Sci 3:116

    Google Scholar 

  • Ganopoulos IV, Kazantzis K, Chatzicharisis I, Karayiannis I, Tsaftaris AS (2011) Genetic diversity, structure and fruit trait associations in Greek sweet cherry cultivars using microsatellite based (SSR/ISSR) and morpho-physiological markers. Euphytica 181(2):237–251

    Article  Google Scholar 

  • Gere J, Yessoufou K, Daru BH, Mankga LT, Maurin O, van der Bank M (2013) Incorporating trnH-psbA to the core DNA barcodes improves significantly species discrimination within southern African Combretaceae. ZooKeys 365:129–147

    Article  Google Scholar 

  • Gismondi A, Rolfo MF, Leonardi D, Rickards O, Canini A (2012) Identification of ancient Olea europaea L and Cornus mas L by DNA barcoding. C R Biol 335(7):472–479

    Article  CAS  PubMed  Google Scholar 

  • Gismondi A, Fanali F, Labarga JMM, Caiola MG, Canini A (2013) Crocus sativus L genomics and different DNA barcode applications. Plant Syst Evol 299(10):1859–1863

    Article  CAS  Google Scholar 

  • Gismondi A, Di Marco G, Delorenzo M, Canini A (2015) Upgrade of Castanea sativa (mill) genetic resources by sequencing of barcode markers. J Genet 94(3):519–524

    Article  PubMed  Google Scholar 

  • Gismondi A, Di Marco G, Martini F, Sarti L, Crespan M, Martínez-Labarga C, Rickards O, Canini A (2016) Grapevine carpological remains revealed the existence of a Neolithic domesticated Vitis vinifera L specimen containing ancient DNA partially preserved in modern ecotypes. J Archaeol Sci 69:75–84

    Article  CAS  Google Scholar 

  • Grieve A (1984) Modern herbal. Penguin

  • Group CBOL Plant Working et al (2009) A DNA barcode for land plants. Proc Natl Acad Sci U S A 106(31):12794–12797

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT Nucl Acids Symp Ser 41:95–98

  • Hilu KW, Alice LA, Liang H (1999) Phylogeny of Poaceae inferred from matK sequences. Ann Mo Bot Gard 86:835–851

    Article  Google Scholar 

  • Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS One 6(5):1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoveka LN, van der Bank M, Boatwright JS, Bezeng BS, Yessoufou K (2016) The noncoding trnH-psbA spacer, as an effective DNA barcode for aquatic freshwater plants, reveals prohibited invasive species in aquarium trade in South Africa. S Afr J Mar Sci 102:208–216

    CAS  Google Scholar 

  • Jarni K, De Cuyper B, Brus R (2012) Genetic variability of wild cherry (Prunus avium L) seed stands in Slovenia as revealed by nuclear microsatellite loci. PLoS One 7(7):1–5

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kocyan A, de Vogel EF, Conti E, Gravendeel B (2008) Molecular phylogeny of Aerides (Orchidaceae) based on one nuclear and two plastid markers: a step forward in understanding the evolution of the Aeridinae. Mol Phylogenet Evol 48(2):422–443

    Article  CAS  PubMed  Google Scholar 

  • Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One 2(6):e508

    Article  PubMed  PubMed Central  Google Scholar 

  • Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci U S A 102(23):8369–8374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahaye R (2008) DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci U S A 105:2923–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S (2015) Plant DNA barcoding: from gene to genome. Biol Rev 90(1):157–166

    Article  PubMed  Google Scholar 

  • Mohanty A, Martin JP, Aguinagalde I (2001) Chloroplast DNA study in wild populations and some cultivars of Prunus avium L. Theor Appl Genet 103(1):112–117

    Article  CAS  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comp Appl Biol Sci 12:357–358

    CAS  Google Scholar 

  • Pang X, Song J, Zhu Y, Xu H, Huang L, Chen S (2011) Applying plant DNA barcodes for Rosaceae species identification. Cladistics 27(2):165–170

    Article  PubMed  Google Scholar 

  • Perazzini R, Leonardi D, Ruggeri S, Alesiani D, D’Arcangelo G, Canini A (2008) Characterization of Phaseolus vulgaris L landraces cultivated in Central Italy. Plant Foods Hum Nutr 63(4):211–218

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russell K (2003) Technical Guidelines for genetic conservation and use for wild cherry (Prunus avium), EUFORGEN, International Plant Genetic Resources Institute Rome Italy 1–6. http://www.euforgen.org/fileadmin/templates/euforgen.org/upload/Publications/Technical_guidelines/859_Technical_guidelines_for_genetic_conservation_and_use_for_Wild_cherry__Prunus_avium_.pdf. Accessed 10 Aug 2018

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Santos C, Pereira F (2018) Identification of plant species using variable length chloroplast DNA sequences. Forensic Sci Int Genet 36:1–12

    Article  CAS  PubMed  Google Scholar 

  • Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R (2005) Towards writing the encyclopaedia of life: an introduction to DNA barcoding. Philos Trans R Soc Lond Ser B Biol Sci 360(1462):1805–1811

    Article  CAS  Google Scholar 

  • Scaltsoyiannes A, Tsoulpha P, Iliev I, Theriou K, Tsaktsira M, Mitras D, Karanikas C, Mahmout S, Christopoulos V, Scaltsoyiannes V, Zaragotas D, Tzouvara A (2009) Vegetative propagation of ornamental genotypes of Prunus avium L. Prop Ornam Plant 9:198–206

    Google Scholar 

  • Scholz H, Scholz I (1995) Prunoideae. In: Hegi G (ed) Illustrierte Flora von Mitteleuropa, 2nd edn. Blackwell Wissenschafts-Verlag, Berlin, pp 446–510

    Google Scholar 

  • Shi S, Li J, Sun J, Yu J, Zhou S (2013) Phylogeny and classification of Prunus sensu lato (Rosaceae). J Integr Plant Biol 55(11):1069–1079

    Article  CAS  PubMed  Google Scholar 

  • Tavaud M, Zanetto A, Santi F, Dirlewanger E (2001) Structuration of genetic diversity in cultivated and wild cherry trees using AFLP markers. Acta Hortic 263–269

  • Theodoridis S, Stefanaki A, Tezcan M, Aki C, Kokkini S, Vlachonasios KE (2012) DNAbarcoding in native plants of the Labiatae (Lamiaceae) family from Chios Island (Greece) and the adjacent Çesme-Karaburun Peninsula (Turkey). Mol Ecol Resour 12:620–633

    Article  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughan SP, Cottrell JE, Moodley DJ, Connolly T, Russell K (2007) Clonal structure and recruitment in British wild cherry (Prunus avium L). For Ecol Manag 242(2–3):419–430

    Article  Google Scholar 

  • Wang W, Wu Y, Yan Y, Ermakova M, Kerstetter R, Messing J (2010) DNA barcoding of the Lemnaceae, a family of aquatic monocots. BMC Plant Biol 10(1):205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welk E, de Rigo D, Caudullo G (2016) Prunus avium in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European Atlas of Forest Tree Species, 1st edn, Luxembourg, p e01491d

  • Yaman B (2003) Yabani kiraz (Cerasus avium (L.) Moench). GÜ-Orman Fakültesi Dergisi 3(1):114–122

    Google Scholar 

  • Yu J, Xue JH, Zhou SL (2011) New universal matK primers for DNA barcoding angiosperms. J Syst Evol 49(3):176–181

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to thank Prof. Ahu Altınkut Uncuoğlu and Dr. Ezgi Çabuk Şahin for their great contribution in data analysis and Miss Sophie Gart who revised the English form of this manuscript.

Data archiving statement

Genetic data were registered in GenBank database. ID number of each deposited sequence, with relative details, was reported in Supplemental Material - Table S1 and copied below.

Population

trnH-psbA

matK

ITS

Abant Population (A)

MF431607

MF431608

MF431606

Molla Fenari Population (B)

MF590194

MF590188

MF590200

Yedigöller Population (C)

MF590195

MF590189

MF590201

Düzce Population (D)

MF590197

MF590190

MF590202

Melen Population (E)

MF590196

MF590191

MF590203

Kefken Population (F)

MF590198

MF590192

MF590204

Gölcük Population (G)

MF590199

MF590193

MF590205

Author information

Authors and Affiliations

Authors

Contributions

AG, AC YOC, and EV designed research; SGU performed research; BUK carried out the sampling; EV authorized the sampling; SGU, AG, and GDM analyzed data; SGU and AG wrote the paper; AC provided financial support; all authors edited, revised, and provided comments to the manuscript.

Corresponding author

Correspondence to Angelo Gismondi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by E. Dirlewanger

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key message

Application of DNA barcoding at intraspecific level, to investigate phylogenetic relationships existing among Turkish wild cherry populations, increase genetic knowledge of this species, and promote its conservation and breeding programs

Angelo Gismondi and Antonella Canini are co-last authors of this manuscript.

Electronic supplementary material

ESM 1

(DOCX 4367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ünsal, S.G., Çiftçi, Y.Ö., Eken, B.U. et al. Intraspecific discrimination study of wild cherry populations from North-Western Turkey by DNA barcoding approach. Tree Genetics & Genomes 15, 16 (2019). https://doi.org/10.1007/s11295-019-1323-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-019-1323-z

Keywords

Navigation