Skip to main content
Log in

Small RNA profiling reveals involvement of microRNA-mediated gene regulation in response to mycorrhizal symbiosis in Poncirus trifoliata L. Raf.

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi (AMF) form mutualistic symbiosis with most land plants, providing mineral nutrients to plants in exchange for photosynthates. Citrus trees have sparse root hairs and thus heavily rely on AMF for nutrient uptake. Although the mechanism underlying AM symbiosis (AMS) is well understood at transcriptional level, little is known about the post-transcriptional regulation of AMS, especially in woody plants. In this study, we performed a comprehensive identification of microRNAs (miRNAs) involved in AMS through Illumina sequencing in a commonly used citrus rootstock, Poncirus trifoliata L. Raf. A total of 148 known miRNAs and 15 novel miRNAs were identified in the roots, among which 20 miRNAs and miRNA*s (microRNA stars) were differentially expressed in response to mycorrhizal colonization, indicating a potential role of these miRNAs and miRNA*s in mycorrhizal symbiosis. Notably, two miRNAs previously reported as responsive to AMS in medicago and tomato (miR171b and miR167h) were also detected to be differentially expressed in mycorrhizal roots of Poncirus trifoliata L. Raf. In addition, our study identified a set of miRNAs (miR399g, miR473, miR1446b/c, and miR477a/c) that could target AMS-related genes, including those encoding SbtM (subtilisin-like serine protease), RAD1 (required for arbuscule development 1), and RFC (replication factor C). Taken together, this study reveals a potential conservation of miRNA-mediated post-transcriptional regulation of AMS between woody plant and herbaceous model plants and also provides some new miRNAs for understanding the regulatory mechanism of AMS in poncirus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen E, Xie ZX, Gustafson AI, Carrington JC (2007) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 131:74–88

    Google Scholar 

  • Bazin J, Khan GA, Combier JP, Bustos-Sanmamed P, Debernardi JM, Rodriguez R, Sorin C, Palatnik J, Hartmann C, Crespi M, Lelandais-Briere C (2013) miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. Plant J 74:920–934

    Article  PubMed  CAS  Google Scholar 

  • Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier JP, Niebel A, Crespi M, Frugier F (2008) MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J 54:876–887

    Article  PubMed  CAS  Google Scholar 

  • Branscheid A, Sieh D, Pant BD, May P, Devers EA, Elkrog A, Schauser L, Scheible WR, Krajinski F (2010) Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Mol Plant-Microbe Interact 23:915–926

    Article  PubMed  CAS  Google Scholar 

  • Bravo A, York T, Pumplin N, Mueller LA, Harrison MJ (2016) Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics. Nat Plants 2:15208

    Article  PubMed  CAS  Google Scholar 

  • Calabrese S, Kohler A, Niehl A, Veneault-Fourrey C, Boller T, Courty PE (2017) Transcriptome analysis of the Populus trichocarpa-Rhizophagus irregularis mycorrhizal symbiosis: regulation of plant and fungal transportomes under nitrogen starvation. Plant Cell Physiol 58:1003–1017

    Article  PubMed  CAS  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST plus: architecture and applications. BMC Bioinformatics 10:421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao Y, Halane MK, Gassmann W, Stacey G (2017) The role of plant innate immunity in the legume-rhizobium symbiosis. Annu Rev Plant Biol 68:535–561

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernie T, Ott T, Gamas P, Crespi M, Niebel A (2006) MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20:3084–3088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Couzigou JM, Lauressergues D, Andre O, Gutjahr C, Guillotin B, Becard G, Combier JP (2017) Positive gene regulation by a natural protective miRNA enables arbuscular mycorrhizal symbiosis. Cell Host Microbe 21:106–112

    Article  PubMed  CAS  Google Scholar 

  • Dai XB, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Devers EA, Branscheid A, May P, Krajinski F (2011) Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiol 156:1990–2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding YQ, Zhou XQ, Zuo L, Wang H, Yu DY (2016) Identification and functional characterization of the sulfate transporter gene GmSULTR1;2b in soybean. BMC Genomics 17:373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Etemadi M, Gutjahr C, Couzigou JM, Zouine M, Lauressergues D, Timmers A, Audran C, Bouzayen M, Becard G, Combier JP (2014) Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol 166:281–U407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  PubMed  CAS  Google Scholar 

  • German MA, Pillay M, Jeong DH, Hetawal A, Luo SJ, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946

    Article  PubMed  CAS  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  PubMed  CAS  Google Scholar 

  • Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617

    Article  PubMed  CAS  Google Scholar 

  • Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, Hirochika H, Imaizumi-Anraku H, Paszkowski U (2008) Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell 20:2989–3005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu JY (2002) A phosphate transporter from Medicago truncatula involved in the acquisiton of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hofferek V, Mendrinna A, Gaude N, Krajinski F, Devers EA (2014) MiR171h restricts root symbioses and shows like its target NSP2 a complex transcriptional regulation in Medicago truncatula. BMC Plant Biol 14:199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ivashuta S, Liu J, Liu J, Lohar DP, Haridas S, Bucciarelli B, VandenBosch KA, Vance CP, Harrison MJ, Gantt JS (2005) RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development. Plant Cell 17:2911–2921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  PubMed  CAS  Google Scholar 

  • Lauressergues D, Delaux PM, Formey D, Lelandais-Briere C, Fort S, Cottaz S, Becard G, Niebel A, Roux C, Combier JP (2012) The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2. Plant J 72:512–522

    Article  PubMed  CAS  Google Scholar 

  • Li H, Deng Y, Wu TL, Subramanian S, Yu O (2010) Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. Plant Physiol 153:1759–1770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu YL, Wang L, Chen DJ, Wu XM, Huang D, Chen LL, Li L, Deng XX, Xu Q (2014) Genome-wide comparison of microRNAs and their targeted transcripts among leaf, flower and fruit of sweet orange. BMC Genomics 15:695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu SC, Xu YX, Ma JQ, Wang WW, Chen W, Huang DJ, Fang J, Li XJ, Chen L (2016) Small RNA and degradome profiling reveals important roles for microRNAs and their targets in tea plant response to drought stress. Physiol Plant 158:435–451

    Article  PubMed  CAS  Google Scholar 

  • Lohse M, Nagel A, Herter T, May P, Schroda M, Zrenner R, Tohge T, Fernie AR, Stitt M, Usadel B (2014) Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant Cell Environ 37:1250–1258

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20:3186–3190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 99:13324–13329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng T, Lv Q, Zhang J, Li JZ, Du YX, Zhao QZ (2011) Differential expression of the microRNAs in superior and inferior spikelets in rice (Oryza sativa). J Exp Bot 62:4943–4954

    Article  PubMed  CAS  Google Scholar 

  • Pumplin N, Harrison MJ (2009) Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol 151:809–819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shukla LI, Chinnusamy V, Sunkar R (2008) The role of microRNAs and other endogenous small RNAs in plant stress responses. Bba-Gene Regul Mech 1779:743–748

    CAS  Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  PubMed  CAS  Google Scholar 

  • Song C, Wang C, Zhang C, Korir NK, Yu H, Ma Z, Fang J (2010) Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata). BMC Genomics 11:431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  PubMed  CAS  Google Scholar 

  • Szittya G, Moxon S, Santos DM, Jing R, Fevereiro MPS, Moulton V, Dalmay T (2008) High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 9:593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takeda N, Sato S, Asamizu E, Tabata S, Parniske M (2009) Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus. Plant J 58:766–777

    Article  PubMed  CAS  Google Scholar 

  • Turner M, Nizampatnam NR, Baron M, Coppin S, Damodaran S, Adhikari S, Arunachalam SP, Yu O, Subramanian S (2013) Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean. Plant Physiol 162:2042–2055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang YN, Wang LX, Zou YM, Chen L, Cai ZM, Zhang SL, Zhao F, Tian YP, Jiang Q, Ferguson BJ, Gresshoff PM, Li X (2014) Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation. Plant Cell 26:4782–4801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Wang ZS, Amyot L, Tian LN, Xu ZQ, Gruber MY, Hannoufa A (2015a) Ectopic expression of miR156 represses nodulation and causes morphological and developmental changes in Lotus japonicus. Mol Gen Genomics 290:471–484

    Article  CAS  Google Scholar 

  • Wang YN, Li KX, Chen L, Zou YM, Liu HP, Tian YP, Li DX, Wang R, Zhao F, Ferguson BJ, Gresshoff PM, Li X (2015b) MicroRNA167-directed regulation of the auxin response factors GmARF8a and GmARF8b is required for soybean nodulation and lateral root development. Plant Physiol 168:101

    CAS  Google Scholar 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    Article  PubMed  CAS  Google Scholar 

  • Wu P, Wu Y, Liu CC, Liu LW, Ma FF, Wu XY, Wu M, Hang YY, Chen JQ, Shao ZQ, Wang B (2016) Identification of arbuscular mycorrhiza (AM)-responsive microRNAs in tomato. Front Plant Sci 7

  • Xue L, Cui HT, Buer B, Vijayakumar V, Delaux PM, Junkermann S, Bucher M (2015) Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. Plant Physiol 167:854–871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao Q, Wang LR, Zhu HH, Chen JZ (2009) Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Sci Hortic 121:458–461

    Article  Google Scholar 

  • Yin X, Wang J, Cheng H, Wang X, Yu D (2013) Detection and evolutionary analysis of soybean miRNAs responsive to soybean mosaic virus. Planta 237:1213–1225

    Article  PubMed  CAS  Google Scholar 

  • Zhang JZ, Ai XY, Guo WW, Peng SA, Deng XX, Hu CG (2012) Identification of miRNAs and their target genes using deep sequencing and degradome analysis in trifoliate orange [Poncirus trifoliata L. Raf]. Mol Biotechnol 51:202–202

    Article  CAS  Google Scholar 

  • Zhang XN, Li X, Liu JH (2014) Identification of conserved and novel cold-responsive microRNAs in trifoliate orange (Poncirus trifoliata (L.) Raf.) using high-throughput sequencing. Plant Mol Biol Report 32:328–341

    Article  CAS  Google Scholar 

  • Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, Chen ZQ, Fang YY, Hua CL, Ding SW, Guo HS (2016) Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat Plants 2

  • Zhou M, Gu L, Li P, Song X, Wei L, Chen Z, Cao X (2010) Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica). Front Biol 5:67–90

    Article  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank ChiuChai Hao from the University of Cambridge for his warm help on the manuscript revision.

Funding

This work was supported by the National Natural Science Foundation of China (No. 31521092) and the National Key Research and Development Program of China (2017YFD0202001).

Author information

Authors and Affiliations

Authors

Contributions

ZY. P., XX. D., and SY. X. conceived and designed the experiments. F. S., C. H., X. Y., and FX. B. prepared the materials and performed the experiments. F. S. analyzed the data and drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhiyong Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by W.-W. Guo

Data archiving statement

The raw sequencing data were deposited in the Sequence Read Archive (SRA) at the National Center for Biotechnology Information (accession number: SRP113070).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, F., He, C., Yan, X. et al. Small RNA profiling reveals involvement of microRNA-mediated gene regulation in response to mycorrhizal symbiosis in Poncirus trifoliata L. Raf.. Tree Genetics & Genomes 14, 42 (2018). https://doi.org/10.1007/s11295-018-1253-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-018-1253-1

Keywords

Navigation