Skip to main content
Log in

Analysis of the molecular variation between and within cultivated and wild Pistacia species using AFLPs

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Knowledge of pistachio genetic diversity is necessary for the formulation of appropriate management strategies for the conservation of these species. We analysed amplified fragment length polymorphisms in a total of 216 pistachio accessions, which included seven populations from three wild species (Pistacia vera, Pistacia khinjuk and Pistacia atlantica subsp. kurdica) and most of the important cultivars from Iran, together with some foreign cultivars. High levels of genetic diversity were detected within the Iranian cultivars, and they showed a clear separation from foreign cultivars, as revealed by unweighted pair group method with arithmetic averaging and supported by analysis of molecular variance. The lowest amount of polymorphism was observed in P. atlantica subsp. kurdica, which showed the lowest number of total bands as compared to the other species. This revealed strong genetic erosion of P. atlantica subsp. kurdica, which reflected a severe decline in habitat and over-exploitation. Based on these findings, strategies are proposed for the genetic conservation and management of pistachio species and cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Angiolillo A, Mencuccini M, Baldoni L (1999) Olive genetic diversity assessed using amplified fragment length polymorphisms. Theor Appl Genet 98:411–421

    Article  CAS  Google Scholar 

  • Bahsa AI, Padulosi S, Chabane K (2007) Genetic diversity of Syrian pistachio (Pistacia vera L.) varieties evaluated by AFLP markers. Gene Resour Crop Evol 54:1807–1816, doi:10.1007/s10722-006-9202-5

    Article  Google Scholar 

  • Esmail-pour A (2001) Distribution, use and conservation of pistachio in Iran. In: Padulosi S, Hadj-Hassan A (eds) In towards a comprehensive documentation and use of pistacia genetic diversity in central and West Asia, North Africa and Europe. Report of the IPGRI workshop, 14–17 December 1998, Ibrid, Jordan. IPGRI, Rome, Italy

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • FAO (2006) FAOSTAT database. http://apps.fao.org/page/form?collection= Production.Crops.Primary&Domain=Production&servlet=1&language=EN&hostname=apps.fao.org&version=default

  • Golan-Goldhirsh A, Barazani O, Wang ZS, Khadkal DK, Saunders JA, Kostiukovsky V, Rowland LJ (2004) Genetic relationships among Mediterranean Pistacia species evaluated by RAPD and AFLP markers. Plant Systemat Evol 246:9–18

    Article  CAS  Google Scholar 

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Google Scholar 

  • Joret C (1976) Les Plantes dansL'antiquité et au moyen âge; histoire, usages et symbolisme. Slatkine Reprints, Genève. Reprinted from the book first published in 1897–1904

  • Hartl L, Seefleder S (1998) Diversity of selected Hop cultivars detected by fluorescent AFLPs. Theo Appl Gene 96:112–116

    Article  CAS  Google Scholar 

  • Hormaza JI, Wünsch A (2007) Pistachio. In: Kole C (ed) Genome mapping and molecular breeding in plants, fruits and nuts, vol 4. Springer, New York, USA, pp 243–251

    Google Scholar 

  • Hormaza JI, Dollo L, Polito VS (1994) Determination of relatedness and geographic movements of Pistacia vera (Pistachio; Anacardiaceae) germplasm by RAPD analysis. Econ Bot 48:349–358

    Google Scholar 

  • Kafkas S (2006) Phylogenetic analysis of the genus Pistacia by AFLP markers. Plant Syst Evol 262:113–124

    Article  Google Scholar 

  • Kafkas S, Perl-Treves R (2001) Morphological and molecular phylogeny of Pistacia species in Turkey. Theo Appl Gene 102:908–915

    Article  CAS  Google Scholar 

  • Kafkas S, Perl-Treves R (2002) Interspecific relationships in Pistacia based on RAPD fingerprinting. Hort Sci 37:168–171

    CAS  Google Scholar 

  • Kafkas S, Kaska A, Wassimi AN, Padulosi S (2006a) Molecular characterisation of Afghan pistachio accessions by amplified fragment length polymorphisms (AFLPs). J Hort Sci Biotechnol 81:864–868

    CAS  Google Scholar 

  • Kafkas S, Ozkan H, Erol Ak B, Acar I, Alti HS (2006b) Detecting DNA polymorphism and genetic diversity in a wide pistachio germplasm: comparison of AFLP, ISSR, and RAPD marker. J Am Soc Hort Sci 131:522–529

    CAS  Google Scholar 

  • Katsiotis A, Hagidimitriou M, Drossoul A, Pontikis C, Loukas M (2003) Genetic relationships among species and cultivars of Pistacia using PAPDs and AFLPs. Euphytica 132:279–286

    Article  CAS  Google Scholar 

  • Kayimov AK, Sultanov RA, Chernova GM (2001) Pistacia in Central Asia. In: Padulosi S, Hadj-Hassan A (eds) Project on underutilizes Mediterranean species. Pistacia: towards a comprehensive documentation of distribution and use of its genetic diversity in Central & West Asia, North Africa and Mediterranean Europe. IPGRI, Rome, Italy

    Google Scholar 

  • Khatamsaz M (1988) Flora of Iran No. 30: Anacardiaceae. Research Institute of Forests and Rangelands, Tehran, Iran

  • Maggs DH (1973) Genetic resources in pistachio. Plant Gene Resour Newsle 29:7–15

    Google Scholar 

  • Manubens A, Lobos S, Jadue Y, Toro M, Messina R, Lladser M, Seelenfrund D (1999) DNA isolation and AFLP fingerprinting of nectarine and peach varieties (Prunus persica). Mol Biol Rep 17:255–267

    Article  CAS  Google Scholar 

  • Maughan PJ, Saghai Maroof MA Buss GR, Huestis GM (1996) Amplified fragment length polymorphism (AFLP) in soybean: species diversity, inheritance, and neaisogenic line analysis. Theo Appl Gene 93:392–401

    Article  CAS  Google Scholar 

  • Milligan BG, Leebens-Mack J, Strand AE (1994) Conservation genetics: beyond the maintenance of marker diversity. Mol Ecol 12:844–855

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Li W (1979) Mathematical model for study genetic variation in terms of restriction endonucleases. Proc Nati Acad Sci USA 74:5267–5273

    Google Scholar 

  • Parfitt DE (1995) Pistachio cultivars. In: Ferguson L (ed) Pistachio production. University of California, Davis, pp 43–46

    Google Scholar 

  • Peakal R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (Microsatellites) markers for germplasm analysis. Mol Breed 2:225–235

    Article  CAS  Google Scholar 

  • Rohlf JF (2004) NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.11. Exeter, Setauket, NY

    Google Scholar 

  • Russell JR, Weber JC, Booth A, Powell W, Sotelo-Montes C, Dawson IK (1999) Genetic variation of Calycophyllum spruceanum in the Peruvian Amazon basin, revealed by amplified fragment length polymorphism (AFLP) analysis. Mol Ecol 8:199–204

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: A software for population genetics data analysis version 2.000 genetics and biometry laboratory, dept. of anthropology. University of Geneva, Switzerland

    Google Scholar 

  • Sensi E, Vignani R, Rhode W, Biricolti S (1996) Characterization of genetic biodiversity with Vitis vinifera L. sangiovese and colorino genotypes by AFLP and ISTR DNA marker technology. Vitis 35:183–188

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tous J, Fergusen L (1996) Mediterranean fruits. In: Janick J (ed) Progress in new crops. ASHS, Arlington, VA

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van der Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang YH, Thomas CE, Dean RA (1997) A genetic map of melon (Cucumis melo L.) based on amplified fragment length polymorphism (AFLP) Markers. Theo Appl Gene 95:791–798

    Article  CAS  Google Scholar 

  • Whitehouse WE, Stone CL (1941) Some aspects of dichogamy and pollination in pistachio. Am Soc Hort Sci 39:95–100

    Google Scholar 

  • Winfield MO, Arnold GM, Cooper F, Le Ray M, White J, Karp A, Edwards KJ (1998) A study of genetic diversity in Populus nigra subsp. betulifolia in The upper seven area of The UK using AFLP markers. Mol Ecol 7:3–10

    Article  CAS  Google Scholar 

  • Xu RQ, Tomooka N, Vaughan DA (2000) AFLP markers for characterizing the Azuki Bean complex. Crop Sci 40:808–815

    CAS  Google Scholar 

  • Zohary M (1952) A monographical study of the genus Pistacia. Palest J Bot Jerus Ser 5:187–228

    Google Scholar 

  • Zohary D (1996) The genus Pistacia L. In: Padulosi S, Caruso T, Barone E (eds) Taxonomy, distribution, conservation and uses of Pistacia genetic resources. IPGRI, Palermo, Italy, pp 1–11

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Agricultural Biotechnology Research Institute of Iran. The authors would like to thank Dr. Hasan Maddah Arefy from the Research Institute of Forests and Rangelands of Iran for the photographs of pistachio. They would also like to thank Dr A. A. Javanshah (Director General of the Iranian Pistachio Research Institute), in particular, for his contribution to the collection of plant material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Mardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanjani, P.S., Mardi, M., Pazouki, L. et al. Analysis of the molecular variation between and within cultivated and wild Pistacia species using AFLPs. Tree Genetics & Genomes 5, 447–458 (2009). https://doi.org/10.1007/s11295-008-0198-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-008-0198-1

Keywords

Navigation