Skip to main content
Log in

Rapid transcriptional response of apple to fire blight disease revealed by cDNA suppression subtractive hybridization analysis

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Fire blight, caused by the bacterium Erwinia amylovora, is a destructive disease of many tree and shrub species of the Rosaceae. Suppression subtractive cDNA hybridization (SSH) was used to identify genes that are differentially up- and down-regulated in apple (Malus x domestica) in response to challenge with E. amylovora. cDNA libraries were constructed from E. amylovora- and mock-challenged apple leaf tissue at various time intervals after challenge treatment, ranging from 0.25 to 72 h post-inoculation (hpi), and utilized in SSH. Gel electrophoresis of PCR-amplified SSH cDNAs indicated a greater quantity and size diversity in the down-regulated EST population at early times after challenge (1 and 2 hpi) compared to early up-regulated sequences and to sequences down-regulated at later (24 and 48 hpi) times after challenge. A total of 468 non-redundant Malus ESTs isolated by SSH in response to E. amylovora challenge were characterized by bioinformatic analysis. Many of ESTs identified following E. amylovora challenge of apple were similar to genes previously reported to respond to bacterial challenge in Arabidopsis thaliana. The results indicate that there was a substantial early (1 and 2 hpi) transcriptional response in apple to fire blight disease involving both the down- and up-regulation of host genes. Additionally, genes identified responding to fire blight challenge early (1 and 2 hpi) differed from those identified later (25, 48, and 72 hpi) in the infection process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abramovitch RB, Anderson JC, Martin GB (2006) Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol 7:601–611

    Article  PubMed  CAS  Google Scholar 

  • Alexandersson E, Fraysse L, Sjövall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Gene Family Information (2007) TAIR, Carnegie Institution of Washington Department of Plant Biology, Stanford and the National Center for Genome Resources, Santa Fe. http://www.arabidopsis.org/browse/genefamily/index.jsp Cited 8 Mar 2007

  • Arabidopsis sugar transporter homepage (2007) Molecular plant physiology, Friedrick Alexander University, Erlangen, Germany http://www.biologie.uni-erlangen.de/mpp/TPer/index_TP.shtml Cited 6 Mar 2007

  • Baker KF (1971) Fire blight of pome fruits, the genesis of the concept that bacteria can be pathogenic to plants. Hilgardia 40:603–633

    Google Scholar 

  • Barny MA (1995) Erwinia amylovora hrpN mutants, blocked in harpin synthesis, express a reduced virulence on host plants and elicit variable hypersensitive reactions on tobacco. Eur J Plant Pathol 101:333–340

    Article  Google Scholar 

  • Bassett CA, Wisniewski ME, Artlip TS, Norelli JL, Renaut J, Farrell RE Jr (2006) Global analysis of genes regulated by low temperature and photoperiod in peach bark. J Am Soc Hortic Sci 131:551–563

    CAS  Google Scholar 

  • BLAST2GO (2006) Centro de Genomica, Insituto Valenciano de Investigaciones Agrarias http://bioinfo.ivia.es/blast2go/html/ Cited 2 Nov 2006

  • Bogdanove AJ, Bauer DW, Beer SV (1998) Erwinia amylovora secretes DspE, a pathogenicity factor and functional AvrE homolog, through the Hrp (type III secretion) pathway. J Bacteriol 180:2244–2247

    PubMed  CAS  Google Scholar 

  • Bonasera JM, Meng X, Beer SV, Owens T, Kim W-S (2006a) Interaction of DspE/A, a pathogenicity/avirulence protein of Erwinia amylovora, with pre-ferredoxin from apple and its relationship to photosynthetic efficiency. Acta Hortic 704:473–477

    CAS  Google Scholar 

  • Bonasera JM, Kim JF, Beer SV (2006b) PR genes of apple: identification and expression in response to elicitors and inoculation with Erwinia amylovora. BMC Plant Biol 6:23

    Article  PubMed  CAS  Google Scholar 

  • Bonn WG, van der Zwet T (2000) Distribution and economic importance of fire blight. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CABI Publishing, Oxon and New York, pp 37–53

    Google Scholar 

  • Boureau T, ElMaarouf-Bouteau H, Garnier A, Brisset M-N, Perino C, Puchea I, Barny M-A (2006) DspA/E, a type III effector essential for Erwinia amylovora pathogenicity and growth in planta, induces cell death in host apple and nonhost tobacco plants. Mol Plant-Microb Interact 19:16–24

    Article  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  PubMed  CAS  Google Scholar 

  • Collmer A, Lindeberg M, Petnici-Ocwieja T, Schneider DJ, Alfano JR (2002) Genomic mining type III secretion system effectors in Pseudomonas syringae yields new picks for all TTSS prospectors. Trends Microbiol 10:462–469

    Article  PubMed  CAS  Google Scholar 

  • Conesa A, Goetz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • DebRoy S, Thilmony R, Kwack YB, Nomura K, He SY (2004) A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci USA 101:9927–9932

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt J, Al-Masri AN, Kurkcuoglu S, Szankowski I, Gau AE (2005) Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Mol Gen Genet 273:326–335

    CAS  Google Scholar 

  • Derick J, Saski C, Lee T, Abbott A, Main D (2007) Comparative and functional genomics of resistance genes in Rosaceae. Plant & Animal Genomes XV Conference Abstracts: P453. http://intl-pag.org/15/abstracts/PAG15_P05h_453.html

  • de Torres M, Sanchez P, Fernandez-Delmond I, Grant M (2003) Expression profiling of the host response to bacterial infection: the transition from basal to induced defence responses in RPM1-mediated resistance. Plant J 33:665–676

    Article  PubMed  Google Scholar 

  • de Torres M, Mansfield JW, Grabov N, Brown IR, Ammouneh H, Tsiamis G, Forsyth A, Robatzek S, Grant M, Boch J (2006) Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis. Plant J 47:368–382

    Article  PubMed  CAS  Google Scholar 

  • Dong H-P, Yu H, Bao Z, Guo X, Peng J, Yao Z, Chen G, Qu S, Dong H (2005) The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta 221:313–327

    Article  PubMed  CAS  Google Scholar 

  • Dowd C, Wilson IW, McFadden H (2004) Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp. vasinfectum. Mol Plant-Microb Interact 17:654–667

    Article  CAS  Google Scholar 

  • Ewing B, Hiller L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Gaudriault S, Malandrin L, Paulin J-P, Barny M-A (1997) DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way. Mol Microbiol 26:1057–1069

    Article  PubMed  CAS  Google Scholar 

  • Genome Database for Rosaceae (2006) Main bioinformatics laboratory, Washington State University, Pullman. http://www.bioinfo.wsu.edu/gdr/projects/malus/unigene/index.shtml Cited 2 Nov 2006

  • Griffith CS, Sutton TB, Peterson PD (eds) (2003) FIRE BLIGHT The foundation of phytobacteriology. APS Press, St Paul

  • Hachez C, Zelazny E, Chaumont F (2006) Modulating the expression of aquaporin gene in planta: A key to understand their physiological functions? Biochim Biophys Acta 1758:1142–1156

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • He SY, Nomura K, Whittam S (2004) Type III protein secretion mechanisms in mammalian and plant pathogens. Biochem Biophys Acta 1694:181–206

    Article  PubMed  CAS  Google Scholar 

  • Heyens K, Valcke R (2006) Fluorescence imaging of infection pattern of apple leaves with Erwinia amylovora. Acta Hortic 704:69–71

    Google Scholar 

  • Kaldenhoff R, Fischer M (2006) Functional aquaporin diversity in plants. Biochim Biophys Acta 1758:1134–1141

    Article  PubMed  CAS  Google Scholar 

  • Kariola T, Brader G, Helenius E, Li J, Heino P, Palva ET (2006) EARLY RESPONSIVE TO DEHYDRATION 15, a negative regulator of abscisic acid responses in Arabidopsis. Plant Physiol 142:1559–1573

    Article  PubMed  CAS  Google Scholar 

  • Keil HL, van der Zwet T (1972) Recovery of Erwinia amylovora from symtomless stems and shoots of Jonathan apple and Barlett pear trees. Phytopathology 62:39–42

    Article  Google Scholar 

  • Klages K, Donnison H, Wünsche J, Boldingh H (2001) Diurnal changes in non-structural carbohydrates in leaves, phloem exudate and fruit in ‘Braeburn’ apple. Aust J Plant Physiol 28:131–139

    CAS  Google Scholar 

  • Lewis S, Goodman RN (1965) Mode of penetration and movement of fire blight bacteria in apple leaf and stem tissue. Phytopathology 55:719–723

    Google Scholar 

  • Li C, Potuschak T, Colon-Carmona A, Gutierrez RA, Doerner P (2005) Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proc Natl Acad Sci USA 102:12978–12983

    Article  PubMed  CAS  Google Scholar 

  • Malnoy M, Reynoird JP, Borejsza-Wysocka EE, Aldwinckle HS (2006) Activation of the pathogen-inducible Gst1 promoter of potato after elicitation by Venturia ineaqualis and Erwinia amylovora in transgenic apple (Malus X domestica.). Transgenic Research 15:83–93

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33:D192–D196

    Article  PubMed  CAS  Google Scholar 

  • Martin JL, McMillan FM (2002) SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol 12:783–793

    Article  PubMed  CAS  Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  PubMed  CAS  Google Scholar 

  • Mogami N, Tanaka I (2002) LP28, a lily pollen-specific LEA-like protein, is locate in the callosic cell wall during male gametogenesis. Sex Plant Reprod 15:57–63

    Article  CAS  Google Scholar 

  • Momol MT, Norelli JL, Piccioni DE, Momol EA, Gustafson HL, Cummins JN, Aldwinckle HS (1998) Internal movement of Erwinia amylovora through symptomless apple scion tissues into the rootstock. Plant Dis 82:646–650

    Article  Google Scholar 

  • NCBI BLAST (2006) National center for biotechnology information, Bethesda. http://www.ncbi.nlm.nih.gov/BLAST/ Cited 2 Nov 2006

  • NCBI Structure Database (2006) National center for biotechnology information, Bethesda. http://www.ncbi.nlm.nih.gov/Structure Cited 14 Dec 2006

  • NCBI VecScreen, The UniVec Database (2007) National center for biotechnology information, Bethesda. http://www.ncbi.nlm.nih.gov/VecScreen/UniVec.html Cited 14 Mar 2007

  • Nissinen RM, Ytterberg AJ, Bogdanove AJ, Van Wijk KJ, Beer SV (2007) Analyses of the secretomes of Erwinia amylovora and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol Plant Pathol 8:55–67

    Article  CAS  Google Scholar 

  • Nomura K, DebRoy S, Lee YH, Pumplin N, Jones J, He SY (2006) A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313:220–223

    Article  PubMed  CAS  Google Scholar 

  • Norelli JL, Holleran HT, Johnson WC, Tobinson TL, Aldwinckle HS (2003) Resistance of Geneva and other apple rootstocks to Erwinia amylovora. Plant Dis 87:26–32

    Article  Google Scholar 

  • Noselli S, Perrimon N (2000) Are there close encounters between signaling pathways? Science 290:68–69

    Article  PubMed  CAS  Google Scholar 

  • Oh C-S, Beer SV (2005) Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Micro Lett 253:185–192

    Article  CAS  Google Scholar 

  • Phred, Phrap, Consed (2007) Laboratory of Phil Green, University of Washington, Seattle. http://www.phrap.org/phredphrapconsed.html Cited 14 Mar 2007

  • Ranjan R, Kao Y-Y, Jiang H, Joshi CP, Harding SA, Tsai C-J (2004) Suppression subtractive hybridization-mediated transcriptome analysis from multiple tissues of aspen (Populus tremuloides) altered in phenylpropanoid metabolism. Planta 219:694–704

    Article  PubMed  Google Scholar 

  • Schwerk C, Schulze-Osthoff K (2006) Methyltransferase inhibition induces p53-dependent apoptosis and a novel form of cell death. Oncogene 24:7002–7011

    Article  CAS  Google Scholar 

  • Stemmer C, Lemming DJ, Franssen L, Grimm R, Grasser KD (2003) Phosphorylation of maize and Arabidopsis HMGB proteins by protein kinase CK2alpha. Biochemistry 42:3503–3508

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Information Resource (2006) Carnegie Institution of Washington Department of Plant Biology, Stanford and the National Center for Genome Resources, Santa Fe. http://www.arabidopsis.org Cited 7 Dec 2006

  • Thilmony R, Underwood W, He SY (2006) Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J 46:34–53

    Article  PubMed  CAS  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-gruwth-promoting Rhizobacterium paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microb Interact 12:951–959

    Article  CAS  Google Scholar 

  • Truman W, de Zabala MT, Grant M (2006) Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance. Plant J 46:14–33

    Article  PubMed  CAS  Google Scholar 

  • van der Zwet T, Beer SV (1999) Fire blight—its nature, prevention and control: a practical guide to integrated disease management. USDA, Washington, DC

    Google Scholar 

  • Vanneste JL, Eden-Green S (2000) Migration of Erwinia amylovora in host plant tissue. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CABI, Oxon and New York, pp 73–83

    Google Scholar 

  • Venisse J-S, Gullner G, Brisset M-N (2001) Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora. Plant Physiol 125:2164–2172

    Article  PubMed  CAS  Google Scholar 

  • Venisse J-S, Malnoy M, Faize M, Paulin J-P, Brisset M-N (2002) Modulation of defense responses of Malus spp. during compatible and incompatible interactions with Erwinia amylovora. Mol Plant-Microb Interact 15:1204–1212

    Article  CAS  Google Scholar 

  • Watari J, Kobae Y, Yamaki S, Yamada K, Toyofuku K, Tabuchi T, Shiratake K (2004) Identification of sorbitol transporters expressed in the phloem of apple source leaves. Plant Cell Physiol 45:1032–1041

    Article  PubMed  CAS  Google Scholar 

  • Wei Z-M, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen, Erwinia amylovora. Science 257:85–88

    Article  PubMed  CAS  Google Scholar 

  • Yakovlev IA, Fossdal C-G, Johnsen O, Junttila O, Skroppa T (2006) Analysis of gene expression during bud burst initiation in Norway spruce via ESTs from subtracted cDNA libraries. Tree Genet Genomes 2:39–52

    Article  Google Scholar 

  • Zhao YF, Blumer SE, Sundin GW (2005) Identification of Erwinia amylovora genes induced during infection of immature pear tissue. J Bacteriol 187:8088–8103

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, He S-H, Sundin GW (2006) The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2 EA is recognized by Arabidopsis RPS2 when expressed in Pseudomonas syringae. Mol Plant-Microb Interact 19:644–654

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Wilbur Hershberger (USDA, ARS, Kearneysville, WV, USA) for valuable assistance with conducting biological challenge experiments, isolating RNA from challenge tissues, cloning PCR-amplified SSH-cDNAs, and editing of SSH-EST sequences and for bioinformatic analyses; Dr. David Needleman (USDA, ARS, Wyndmoor, PA, USA) of the Eastern Regional Research Center’s Nucleic Acid Facility for sequencing the SSH-ESTs; Greg Richart (The Pennsylvania State University, York, USA) for assistance with SSH; Jing Ma (USDA, ARS, Kearneysville, USA) for assistance with semi-quantitative RT-PCR; John McGraw (USDA, ARS, Kearneysville, USA) for assistance with sequence editing and bioinformatics; and Dr. Zuping Yang (USDA-ARS, Kearneysville, USA) for assistance with cloning PCR-amplified SSH-cDNAs. The project was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number 2005-35300-15462. Additional support was provided by NutriCore N.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Norelli.

Additional information

Communicated by F. Gmitter

J. L. Norelli and R. E. Farrell, Jr. contributed equally to the design and execution of the experiments in this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table S1

List of PCR primers used to access expression of select ESTs by RT-PCR (DOC 41.5 kb)

Supplemental Table S2

Annotation of ESTs identified by SSH following E. amylovora challenge of ‘Gale Gala’ apple leaf tissue (XLS 123 kb)

Supplemental Table S3

Similaritya between SSH-ESTs identified following E. amylovora challenge of ‘Gale Gala’ apple leaf tissue (Malus SSH-EST) and 2,800 Arabidopsis genes differentially regulated in response to bacterial challenge (At-Bac gene) (XLS 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norelli, J.L., Farrell, R.E., Bassett, C.L. et al. Rapid transcriptional response of apple to fire blight disease revealed by cDNA suppression subtractive hybridization analysis. Tree Genetics & Genomes 5, 27–40 (2009). https://doi.org/10.1007/s11295-008-0164-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-008-0164-y

Keywords

Navigation