Skip to main content

Advertisement

Log in

THz Super-Resolution Imaging in Transmission Technology by Using Butterfly and Pattern Device Samples

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Recently there has been an increasing demand for terahertz technology, especially in imaging. In the past few decades, the applications of terahertz (THz) imaging technology have seen significant developments in the fields of biology, medical diagnosis, food safety, and nondestructive testing. The medical and semiconductor industry has always attracted significant attention worldwide. In particular, the importance of real and perfect inspection technologies has been growing due to an increasing demand for improving the quality of life and developing industries. This paper presents the research of THz super-resolution imaging in transmission mode by using different samples. We have reported transmission measurement at different THz frequency of each sample. The butterfly sample used super-resolution THz imaging. The THz super-resolution is obtained excellent at 1.8 THz, it is near about 1 micrometer. Good resolution images have been obtained. This new THz super-resolution techniques can apply in medical and security purposes. Further applications will be reported in the coming papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sørgård, T. R., van Rheenen, A. D., & Haakestad, M. W. (2016). Terahertz imaging of composite materials in reflection and transmission mode with a time-domain spectroscopy system. In Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications IX (9747 vol., p. 974714). International Society for Optics and Photonics

  2. Yadav, N. P., Hu, G. & Kumar, A. (2021). Terahertz Parametric Real-Time Imaging of Jade Stone by Terasense. Wireless Personal Communications, 116, 2899–2911

    Article  Google Scholar 

  3. Yadav, N. P., Yadav, Hu, G., H., Yao, Z. & Kumar, A. (2021). Study of Dental Caries by Using Terasense Technology, JEST Published, 100082

  4. Einarsdóttir, H., Emerson, M. J., Clemmensen, L. H., Scherer, K., Willer, K., Bech, M.,  & Larsen, R. (2016). Bjarne Kjær Ersbøll, and Franz Pfeiffer, Novelty detection of foreign objects in food using multi-modal x-ray imaging. Food Control, 67, 39–47

    Article  Google Scholar 

  5. Nielsen, M. S., Lauridsen, T., Christensen, L. B., & Feidenhans, R. (2013). X-ray dark-field imaging for detection of foreign bodies in food. Food Control, 30(2), 531–535

    Article  Google Scholar 

  6. Gowen, A. A., Tiwari, B. K., Cullen, P. J., McDonnell, K., & O’Donnell, C. P. (2010). Applications of thermal imaging in food quality and safety assessment. Trends in food science & technology, 21(4), 190–200

    Article  Google Scholar 

  7. Chandrapala, J., Oliver, C.,  Kentish, S., & Ashokkumar, M. (2012). Ultrasonics in food processing–food quality assurance and food safety. Trends in Food Science & Technology, 26(2), 88–98

    Article  Google Scholar 

  8. Yang, C. C., Kim, M. S., Kang, S., Cho, B. K., Chao, K., Lefcourt, A. M., & Chan, D. E. (2012). Red to far-red multispectral fluorescence image fusion for detection of fecal contamination on apples. Journal of Food Engineering, 108(2), 312–319

    Article  Google Scholar 

  9. Vipiana, F., Crocco, L., & LoVetri, J. (2020). Electromagnetic imaging and sensing for food quality and safety assessment [guest editorial]. IEEE Antennas and Propagation Magazine, 62(5), 16–17

    Article  Google Scholar 

  10. Liu, X., Qiu, B., Chen, Q., Ni, Z., Jiang, Y., Long, M., & Gui, L. (2014). Characterization of graphene layers using super resolution polarization parameter indirect microscopic imaging,. Optics Express, 22, 20446–20456

    Article  Google Scholar 

  11. Ullah, K., Liu, X., Yadav, N., Habib, M., Song, L., & Garcia-Camara, B. (2017). Light Scattering by Subwavelength Cu2O Particle. Nanotechnology (28),134002.

  12. Ullah, K., Liu, X., Jichuan, X., Hao, J., Xu, B., Jun, Z., & Liu, W. (2017). A Polarization Parametric Method of Sensing the Scattering Signals From a Submicrometer Particle. IEEE Photonics Technology Letters, 29(1), 19–22

  13. Manfrinato, V. R., Zhang, L., Su, D., Duan, H., Hobbs, R. G., Stach, E. A., & Berggren, K. K. (2013). Resolution Limits of Electron-Beam Lithography toward the Atomic Scale. Nano Letters, 13, 1555–1558

    Article  Google Scholar 

  14. Wang, W., Yadav, N. P., Shen, Z., Cao, Y., Liu, J., & Liu, X. (2018). Two stage magnifying Hyperlens Structure based on Metamaterials for Super-resolution imaging. International Journal for Light and Electron Optics 174, 199–206

  15. Yadav, N., Wang, W., Ullah, K. & Liu, X. (August 2018). Polarization Parametric Indirect Microscopic Imaging for Patterned Device Line Edge Inspection. Applied Physics B (Springer Nature) 8, 124:167

  16. Ullah, K., Garcia-Camara, B., Habib, M., Yadav, N. P. , Liu, X. (2018). An Indirect Method of Imaging the Stokes-Parameter of a submicron Particle with Sub-diffraction Scattering. Journal of Quantitative Spectroscopy and Radioactive Transfer, 213, 35–40

  17. Ullah, K., Liu X., Habib, M., Lepeshov, S., Garcia-Camara, B., Krasnok, A., Liu, J., Hao, J., Yadav, N. (2018). Nagendra Yadav, Chiral All-Dielectric Trimer Nanoantenna. Journal of Quantitative Spectroscopy and Radiative Transfer 208, 71–77

  18. Knobloch, P., Schildknecht, C., Kleine-Ostmann, T., Koch, M., Hoffmann, S., Hofmann, M., Rehberg, E., Sperling, M., Donhuijsen, K., Hein, G., et al. (2002). Medical THz imaging: an investigation of histopathological samples. Physics in Medicine & Biology, 47(21), 3875

    Article  Google Scholar 

  19. Danielle, M., Charron, K., Ajito, J. Y., Kim, & Ueno, Y. (2013). Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging. Analytical Chemistry, 85(4), 1980–1984

    Article  Google Scholar 

  20. Federici, J. F., Schulkin, B.,  Huang, F., Gary, D., Barat, R., Oliveira, F., & Zimdars, D. (2005). THz 14 Terahertz Technology imaging and sensing for security applications—explosives, weapons and drugs. Semiconductor Science and Technology, 20(7), S266

    Article  Google Scholar 

  21. Catapano, I., & Soldovieri, F. (2017). A data processing chain for terahertz imaging and its use in artwork diagnostics. Journal of Infrared Millimeter and Terahertz Waves, 38(4), 518–530

    Article  Google Scholar 

  22. Jördens, C., Rutz, F., & Koch, M. (2006). Quality assurance of chocolate products with terahertz imaging. In European Conference on Non-Destructive Testing

  23. Shin, H. J., Choi, S. W., & Ok, G. (2018). Qualitative identification of food materials by complex refractive index mapping in the terahertz range. Food Chemistry, 245, 282–288

    Article  Google Scholar 

  24. Tang, H. H., Huang, T. J., Liu, J. Y., Tan, Y. H., & Liu, P. K. (2017). Tunable terahertz deep subwavelength imaging based on a graphene monolayer. Scientific Reports, 7, 46283. https://doi.org/10.1038/srep46283

    Article  Google Scholar 

  25. Liu, J. Y., Huang, T. J., & Liu, P. K. (2018). Terahertz super-resolution imaging using four-wave mixing in graphene. Optics Letters, 43, 2102–2105. https://doi.org/10.1364/OL.43.002102

    Article  Google Scholar 

  26. Lin, D. Y., Gagnon, L. A., Howard, M. D., Halpern, A. R., & Vaughan, J. C. (2018). Extended-depth 3D super-resolution imaging using probe-refresh STORM. Biophys J, 114, 1980–1987. https://doi.org/10.1016/j.bpj.2018.03.023

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support by NSFC-2017 (International Young Scientist Fund No. 61750110520, Special project for guiding local science and technology development (2018ZYYD006) and Hubei Polytechnic University Laboratory fund (19XJK24R).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nagendra P. Yadav or Guozhen Hu.

Ethics declarations

Compliance with Ethical Standards

The authors declare that, they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, N.P., Hu, G. & Wang, YF. THz Super-Resolution Imaging in Transmission Technology by Using Butterfly and Pattern Device Samples. Wireless Pers Commun 128, 1799–1811 (2023). https://doi.org/10.1007/s11277-022-10019-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-10019-2

Keywords

Navigation