Skip to main content

Advertisement

Log in

Architecture Optimization for Filtered Multicarrier Waveforms in 5G

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless communication network is the backbone of each and every organization of today modern globe. The rapid emergence of smart devices, smart homes, internet of things and clean energy become key sources in today society. In result the data traffic, emerging of new service and application are increased every year. Hence, there is a growing demand for 5G technology in all above mentioned fields. Therefore, better waveform types for 5G technology is needed, which has ability of high spectral efficiency, lower latency and less complexity. It is predicted that the data traffic will arise 1000 × in near future. In this work filtered orthogonal frequency division multiplexing (F-OFDM) and universal filtered orthogonal frequency division multiplexing (UF-OFDM) techniques are discussed to degrade key issues such as computational complexity, peak average power ratio (PAPR), lower spectral efficiency, and higher latency. The suggested work decreases the drawbacks faced by previous work like limited capacity and complexity. We also analyze algorithms and simplification for F-OFDM and UF-OFDM waveforms from an implementation perspective towards low complexity and efficient transceiver design. Moreover, F-OFDM and UF-OFDM are studied based on multicarrier modulation and enabled to reduce to out-of-band power leakage (OOBPL) of OFDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Any kind of data related to research work can be provided as per Requirement.

Code Availability

The code is available as per requirement.

References

  1. Nissel, R. et al. (2017). Filter bank multicarrier modulation schemes for future mobile communications. IEEE Journal on Selected Areas in Communications

  2. Haykin, S. O. (2013). Adaptive filter theory. Pearson Higher Ed.

  3. Nadal, J., Nour, C., & Baghdadi, A. (2016). Low-complexity pipelined architecture for FBMC/OQAM transmitter. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(1), 19–23.

    Google Scholar 

  4. Nam, H., et al. (2016). A new filter-bank multicarrier system with two prototype filters for qam symbols transmission and reception. IEEE Transactions on Wireless Communications, 15(9), 5998–6009.

    Article  Google Scholar 

  5. Vakilian, V. et al. (2013). Universal-filtered multi-carrier technique for wireless systems beyond lte. In: Globecom Workshops (GC Wkshps), IEEE. IEEE, 2013, pp. 223–228.

  6. Berardinelli, G., et al. (2016). Generalized dft-spread-ofdm as 5g waveform. IEEE Communications Magazine, 54(11), 99–105.

    Article  Google Scholar 

  7. Fuhrwerk, M., et al. (2017). Scattered pilot-based channel estimation for channel adaptive fbmc-oqam systems. IEEE Transactions on Wireless Communications, 16(3), 1687–1702.

    Article  Google Scholar 

  8. Zhou, J. et al. (2016). FOFDM based on discrete cosine transform for intensity-modulated and direct-detected systems. Journal of Lightwave Technology 34(16), 3717–3725. https://doi.org/10.1109/JLT.2016.2586526.

  9. Zhou, J., Qiao, Y., Cai, Z., & Ji, Y. (2015). Asymmetrically clipped optical fast ofdm based on discrete cosine transform for IM/DD systems. Journal of Lightwave Technology, 33(9), 1920–1927.

    Article  Google Scholar 

  10. Qiu, Y., Liu, Z., & Qu, D. (2017). Filtered bank based implementation for filtered OFDM. In: 2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC), Macau, 2017, pp. 15–18. https://doi.org/10.1109/ICEIEC.2017.8076502.

  11. Balint, C. & Budura, G. (2018). OFDM-based multi-carrier waveforms performances in 5G. In: 2018 International Symposium on Electronics and Telecommunications (ISETC), Timisoara, pp. 1–4.

  12. Hammoodi, A., Udah1, L., & Abas Taher, M. green coexistence for 5G waveform candidates: A review”, IEEE Access. https://doi.org/10.1109/ACCESS.2019.2891312

  13. Shahbaz, M. M., Wakeel, A., Junaid-ur-Rehman, & Khan, B. (2019). FPGA based implementation of FIR filter for FOFDM waveform. In: 2019 2nd International Conference on Communication, Computing and Digital systems (C-CODE), Islamabad, Pakistan, 2019, pp. 226–230.

  14. Matthe, M. Zhang, D., Schaich, F., Wild, T., Ahmed, R. & Fettweis, G. (2016). A reduced complexity time-domain transmitter for UF-OFDM. In: 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), pp. 1–5.

  15. Pérez Santacruz, J., Rommel, S., Johannsen, U., Jurado-Navas, A., & Tafur, M. I. (2020). Candidate waveforms for ARoF in beyond 5G. Applied Sciences, 10(11), 3891. https://doi.org/10.3390/app10113891

    Article  Google Scholar 

  16. Noque, D. F., et al. (2018). Thermal and dynamic range characterization of a photonicsbased RF amplifier. Optics Communications, 414, 191–194.

    Article  Google Scholar 

  17. Mohajer, A., Bavaghar, M., & Farrokhi, H. (2020). Reliability and mobility load balancing in next generation self-organized networks: Using stochastic learning automata. Wireless Personal Communications, 114(3), 2389–2415.

    Article  Google Scholar 

  18. Luvisotto, M., Pang, Z., & Dzung, D. (2019). High-performance wireless networks for industrial control applications: New targets and feasibility. Proceedings of the IEEE, 107(6), 1074–1093.

    Article  Google Scholar 

  19. Yusuf, İ. T., Elif, B. T., Asuman, S., & Ali, Ö. (2021). A new PAPR and BER enhancement technique based on lifting wavelet transform and selected mapping method for the next generation waveforms. AEU—International Journal of Electronics and Communications 138, 153871.

  20. FANTASTIC-5G, Deliverable D2.1. (2016). Air interface framework and specification of system level simulations.

  21. Abdullahi, A. B., Uggalla, L. C., Caldeirinha, R. F. S., & Eastment, J. (2021). Proposed 5G waveforms performance evaluation with multiantenna MIMO system. Telecoms Conference (ConfTELE), 2021, 1–6. https://doi.org/10.1109/ConfTELE50222.2021.9435484

    Article  Google Scholar 

  22. Bockelmann, C., Pratas, N., Nikopour, H., Au, K., Svensson, T., Stefanovic, C., Popovski, P., & Dekorsy, A. (2016). Massive machine-type communications in 5g: Physical and mac-layer solutions. IEEE Communications Magazine, 54(9), 59–65.

    Article  Google Scholar 

  23. Khan, B. & Velez, F. J. (2020). Multicarrier waveform candidates for beyond 5G. In: 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), 2020, pp. 1-6https://doi.org/10.1109/CSNDSP49049.2020.9249568

  24. Holfeld, B., Wieruch, D., Wirth, T., Thiele, L., Ashraf, S. A., Huschke, J., Aktas, I., & Ansari, J. (2016). Wireless communication for factory automation: An opportunity for lte and 5g systems. IEEE Communications Magazine, 54(6), 36–43.

    Article  Google Scholar 

  25. Zaidi, A. A., Baldemair, R., Tullberg, H., Bjorkegren, H., Sundstrom, L., Medbo, J., Kilinc, C., & Silva, I. D. (2016). Waveform and numerology to support 5g services and requirements. IEEE Communications Magazine, 54(11), 90–98.

    Article  Google Scholar 

  26. Eldessoki, S., Holfeld, B., Wieruch, D. (2017) Impact of waveforms on coexistence of mixed numerologies in 5G URLLC networks. In: WSA 2017; 21th International ITG Workshop on Smart Antennas, pp. 1–6.

  27. Qu, D., Wang, F., Wang, Y., Jiang, T., & Farhang-Boroujeny, B. (2017). Improving spectral efficiency of fbmc-oqam through virtual symbols. IEEE Transactions on Wireless Communications, 16(7), 4204–4215.

    Article  Google Scholar 

  28. Wang, J., et al. (2017). ‘Spectral efficiency improvement with 5G technologies: Results from field tests.’ IEEE Journal on Selected Areas in Communications, 35(8), 1867–1875.

    Google Scholar 

  29. Ijaz, A., Zhang, L., Xiao, P., & Tafazolli, R. (2016). Analysis of candidate waveforms for 5G cellular systems. Towards 5G Wireless Networks—A Physiscal Layer Perspective, H. K. Bizaki, Ed. Rijeka, InTech, 2016, ch. 1.

  30. Ahmed, R., Wild, T., & Schaich, F. (2016). Coexistence of UF-OFDM and CP-OFDM. In: Proceedings of IEEE 83rd Vehicle and Technology Conference (VTC Spring), pp. 1–5.

  31. Valcarenghi, L. et al. (2019). Requirements for 5G fronthaul. In: 18th International Conference on Transparent Optical Networks (ICTON).

  32. Werner, K., He, N., & Baldemair, R. (2017). Multi-subcarrier system with multiple numerologies, U.S. Patent 9 820 281.

  33. Guan, P., et al. (2017). ‘5G field trials: OFDM-based waveforms and mixed numerologies.’ IEEE Journal on Selected Areas in Communications, 35(6), 1234–1243.

    Article  Google Scholar 

  34. Vannithamby, R., & Talwar, S. (2017). Towards 5G: Applications, Requirements and Candidate Technologies. Wiley.

    Google Scholar 

  35. Van Eeckhaute, M., Bourdoux, A., De Doncker, P., & Horlin, F. (2017). ‘Performance of emerging multi-carrier waveforms for 5G asynchronous communications.’ EURASIP Journal of Wireless Communications and Networks, 2017(1), 29.

    Article  Google Scholar 

  36. Bandari, S. K., Vakamulla, V. M., & Drosopoulos, A. (2017). ‘PAPR analysis of wavelet based multitaper GFDM system.’ AEU-International Journal of Electronic and Communications, 76, 166–174.

    Google Scholar 

  37. TipÆn, M. N., JimØnez, M. N., Cano, I. N., ArØvalo, G. (2017). Comparison of clipping techniques for PAPR reduction in UFMC systems. In Proceeding of IEEE 9th Conference Latin-American Conference Communications. (LATINCOM), 2017, pp 1–4.

  38. Rong, W., Cai, J., & Yu, X. (2017). ‘Low-complexity PTS PAPR reduction scheme for UFMC systems.’ Cluster Comput., 20(4), 3427–3440.

    Article  Google Scholar 

  39. Huawei, H. (2016). f-OFDM Scheme and Filter Design, R1–165425. [Online]. Available: www.3gpp.org

  40. 4G America Community, (2015). 5G Spectrum Recommendation, White Paper. 5GA 5G Spectrum Recommendations 2017 FINAL.pdf. http://www.5gamericas.org/files/9114/9324/1786/

  41. Robin, G., Nikolaos, B., Leonardo, G. B., Vincent, B., Jean-Baptiste, D., Dimitri, K., Oriol, F.-B., Xavier, ´M., Miquel, P., Michael, F., & Kilian, R. (2017). The 5G ¨candidate waveform race: a comparison of complexity and performance. EURASIP Journal on Wireless Communications and Networking 2017, 13.

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, FA, MA; methodology, AA, MA; software, FA, MSQ; validation, FM, ST; formal analysis, MAK, FA; data analysis, MA; writing–original draft preparation, FA, MA.

Corresponding author

Correspondence to Farman Ali.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abid, M., Ali, F., Armghan, A. et al. Architecture Optimization for Filtered Multicarrier Waveforms in 5G. Wireless Pers Commun 124, 3743–3766 (2022). https://doi.org/10.1007/s11277-022-09537-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09537-w

Keywords

Navigation