Skip to main content
Log in

Bandwidth Improvement of Stub Loaded Compact Ultra-Wideband Microstrip Patch Antenna for C/X-Band Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this research paper, a square ultra-wideband microstrip antenna is designed on a compact ground of size 24 × 24  mm2 using low cost FR-4 substrate. Antenna patch is designed by successively loading four rectangular patch segments of different sizes (antenna-1 to 4) and a square shape stub on top of radiating patch (antenna-5). The radiating patch is optimized by parametric analysis of square shape stub. The impedance bandwidth (S11 < –10 dB) of proposed antenna for an optimized dimension of stub has been obtained 106.92% (8.11 GHz) in between frequency 3.53–11.64 GHz showing peak gain of 7.2 dB. The proposed antenna has good return loss of –42.56 dB at 9.51 GHz resonant frequency. Frequency band 3.53–11.64 GHz is appropriate for simultaneously used of WiMAX (3.25–3.85 GHz), C-band (4–8 GHz) and partial X-band (8–12 GHz). The proposed antenna design is excited by 50Ω microstrip line feed. IE3D simulation tool has been employed for the designing and simulation of proposed structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Balanis, C. A. (2005). Antenna Theory. New York: Analysis and Design. John Wiley & Sons.

    Google Scholar 

  2. Revision of Part 15 of the Communication’s Rules Regarding Ultra-Wideband Transmission Systems, Federal Communications Commission, ET-Docket FCC 02-48, 98-153, 2002.

  3. Wang, H. Y., & Lancaster, M. J. (1999). Aperture-coupled thin film superconducting meander antennas. IEEE Transaction on Antennas and Propagation, 47(5), 829–836.

    Article  Google Scholar 

  4. Waterhouse, R. (2007). Printed Antennas for Wireless Communications. John Wiley & Sons Inc.

    Book  Google Scholar 

  5. Alam, T., Faruque, M. R. I., Islam, M. T., & Samsuzzaman, M. (2015). Dual elliptical patch antenna design on low cost epoxy resin polymer substrate material. International Journal of Applied Electromagnetics and Mechanics, 49, 23–29.

    Article  Google Scholar 

  6. Jeong, J., & Chung, J. (2019). Ultra wideband spherical self-complementary antenna with capacitive and inductive loadings. Journal of Electrical Engineering & Technology, 14, 833–838.

    Article  Google Scholar 

  7. Shaalan, A. A., & Ramadan, M. I. (2010). Design of a compact hexagonal monopole antenna for ultra-wideband applications. Journal of Infrared, Millimeter, and Terahertz Waves, 31, 958–968.

    Google Scholar 

  8. Ge, L., & Luk, K. M. (2012). A wideband magneto–electric dipole antenna. IEEE Transaction on Antennas and Propagation, 60(11), 4987–4991.

    Article  Google Scholar 

  9. Sadat, S., Fardis, M., Geran, F. G., & Dadashzadeh, G. R. (2007). A compact microstrip square-ring slot antenna for UWB applications. Progress In Electromagnetics Research, 67, 173–179.

    Article  Google Scholar 

  10. Gao, S. S., Li, J., & Qiao, H. M. (2019). Compact band notched slot antenna for ultra-wideband (UWB) applications based on strong couplings slots. Journal of Electrical Engineering & Technology, 14, 2091–2095.

    Article  Google Scholar 

  11. Dastranj, A., Imani, A., & Moghaddasi, M. N. (2008). Printed wide slot antenna for wideband applications. IEEE Transaction on Antennas and Propagation, 56(10), 3097–3102.

    Article  Google Scholar 

  12. Lin, S. Y., & Ke, B. J. (2009). Ultrawideband printed patch antenna in notch. Microwave and Optical Technology Letter, 51(9), 2080–2084.

    Article  Google Scholar 

  13. Sarkar, M., Dwari, S., & Daniel, A. (2015). Printed monopole antenna for ultra-wideband application with tunable triple band-notched characteristics. Wireless Personal Communication, 84(4), 2943–2954.

    Article  Google Scholar 

  14. Ayub, S., & Srivastava, S. (2016). Bandwidth enhancement by direct coupled antenna for WLAN/GPS/WiMax applications and feed point coordinate analysis through ANN. Wireless Personal Communication, 91(1), 9–32.

    Article  Google Scholar 

  15. Malekpoor, H., & Jam, J. (2013). Design of an ultra-wideband microstrip patch antenna suspended by shorting pins. Wireless Personal Communication, 71, 3059–3068.

    Article  Google Scholar 

  16. Moghaddasi, M. N., Danideh, A., Sadeghifakhr, R., & Azadi, M. R. (2009). CPW-fed ultra wideband slot antenna with arc-shaped stub. IET Microwaves, Antennas & Propagation, 3(4), 681–686.

  17. Liang, J., Chiau, C. C., Chen, X., & Parini, C. G. (2004). Printed circular disc monopole antenna for ultra-wideband applications. Electronics Letters, 40(20), 1246–1247.

    Article  Google Scholar 

  18. George, N., & Lethakumary, B. (2015). A compact microstrip antenna for UWB applications. Microwave and Optical Technology Letters, 57(3), 621–624.

    Article  Google Scholar 

  19. Sharma, P., Vaish, A., & Yaduvanshi, R. S. (2019). The design of a turtle-shaped dielectric resonator antenna for ultrawide-band applications. Journal of Computational Electronices, 18, 1333–1341.

    Article  Google Scholar 

  20. Srivastava, D. K., Khanna, A., & Saini, J. P. (2015). Design of a wideband gap–coupled modified square fractal antenna. Journal of Computational Electronics, 15(1), 239–247.

    Article  Google Scholar 

  21. Gupta, A., Srivastava, D. K., Saini, J. P., & Verma, R. K. (2020). Comparative analysis of microstrip-line-fed gap-coupled and direct-coupled microstrip patch antennas for wideband applications. Journal of Computational electronics, 19(1), 457–468.

    Article  Google Scholar 

  22. Subbarao, A., & Raghavan, S. (2013). Compact coplanar waveguide-fed planar antenna for ultra-wideband and WLAN applications. Wireless Personal Communication, 71, 2849–2862.

    Article  Google Scholar 

  23. Verma, R. K., & Srivastava, D. K. (2019). Bandwidth enhancement of a slot loaded T-shape patch antenna. Journal of Computational Electronics, 18(1), 205–210.

    Article  Google Scholar 

  24. Shakib, M. N., Moghavvemi, M., & Mahadi, W. N. L. (2015). A low-profile patch antenna for ultrawideband application. IEEE Antennas and Wireless Propagation Letters, 14, 1790–1793.

    Article  Google Scholar 

  25. Khalily, M., Rahim, M. K. A., Kishk, A. A., & Danesh, S. (2013). Wideband P-shaped dielectric resonator antenna. Radioengineering, 22(1), 281–285.

    Google Scholar 

  26. Chen, D., & Cheng, C. H. (2009). A novel compact ultra-wideband (UWB) wide slot antenna with via holes. Progress In Electromagnetics Research, PIER, 94, 343–349.

    Article  Google Scholar 

  27. Solanki, S. S., Singh, S., & Singh, D. (2017). Modified wideband bowtie antenna for WLAN and high speed data communication applications. Wireless Personal Communication, 95, 2649–2663.

    Article  Google Scholar 

  28. Khanna, P., Sharma, A., Shinghal, K., & Kumar, A. (2016). A defected structure shaped CPW-fed wideband microstrip antenna for wireless applications. Journal of Engineering, Article ID 2863508. https://doi.org/10.1155/2016/2863508

  29. Mandal, K., & Sarkar, P. P. (2013). High gain wide–band U–shaped patch antennas with modified ground planes. IEEE Transactions on Antennas and Propagation, 61(4), 2279–2282.

    Article  Google Scholar 

  30. Yadav, A., Singh, V. K., & Mohan, H. (2019). Design of a U–shaped circularly polarized wearable antenna with DGS on a fabric substrate for WLAN and C–band applications. Journal of Computational Electronics, 18(3), 1103–1109.

    Article  Google Scholar 

  31. Rawat, S., & Sharma, K. K. (2014). A compact broadband microstrip patch antenna with defected ground structure for C–band applications. Central European Journal of Engineering, 4(3), 287–292.

    Google Scholar 

  32. Tripathi, D., Srivastava, D. K., & Verma, R. K. (2021). Bandwidth enhancement of slotted rectangular wideband microstrip antenna for the application of WLAN/WiMAX. Wireless Personal Communications, 1–15. https://doi.org/10.1007/s11277-021-08257-x.

  33. IE3D Electromagnetic Simulation and Optimization Package, Version 9.0.

  34. Verma, R. K., & Srivastava, D. K. (2020). Design and analysis of triple-band rectangular microstrip antenna loaded with notches and slots for wireless applications. Wireless Personal Communications, 114, 1847–1864.

    Article  Google Scholar 

  35. Levis, C. A. (1999). Friis Free-Space Transmission Formula. In Wiley Encyclopedia of Electrical and Electronics Engineering: John Wiley & Sons Inc.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Kumar Verma.

Ethics declarations

Conflict of interest

The author declares no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, R.K., Srivastava, D.K. Bandwidth Improvement of Stub Loaded Compact Ultra-Wideband Microstrip Patch Antenna for C/X-Band Applications. Wireless Pers Commun 120, 185–202 (2021). https://doi.org/10.1007/s11277-021-08441-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08441-z

Keywords

Navigation