Skip to main content
Log in

Leveraging Multi-Instance RPL Routing Protocol to Enhance the Video Traffic Delivery in IoMT

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Nowadays, the massive proliferation of real-world multimedia devices has paved the way to the emergence of a new paradigm called the Internet of Multimedia Things wherein Low-power and Lossy Networks (LLNs) are the main components of this new technology. RPL is an IPv6 routing protocol for LLNs designed by IETF to meet the requirements of a wide range of LLN applications such as Wireless Multimedia Sensor Networks where video traffic is expected to reach 6 times more than non-video traffic in 2025. The mono-instance version of RPL is far from satisfying the network’s Quality of Service (QoS) and the user’s Quality of Experience (QoE), as video in its compressed form is typically composed of various frames with different priorities requiring different QoS and QoE levels. In this paper, we exploit the multi-instance version of RPL for developing a new routing approach that improves the transport of a compressed video, composed of two types of frames with different priorities, by delivering each of them on the corresponding instance. The fundamental question we are addressing, is to find the best way to construct these instances: instances with Nodes Disjoint (ND) or Links Disjoint (LD). To do so, we designed a Multi-Instance routing protocol, named MI-RPL, and we performed extensive simulation experiments using the Cooja simulator. The comparison of MI-RPL-ND, MI-RPL-LD and RPL which regards to QoS and QoE performance metrics, confirms that multi-instance routing for video transmission in WMSN (and in particular MI-RPL-ND) is the best choice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. Initially, the \(Parent\_list_{Insti}\) contains a single parent, which therefore corresponds to the preferred parent.

  2. Emission starts after 60 s so as to ensure that the DODAG is entirely constructed.

  3. https://insense.cs.st-andrews.ac.uk/files/2013/04/tmote-sky-datasheet.pdf.

References

  1. Akyildiz, I. F., Melodia, T., & Chowdhury, K. R. (2007). A survey on wireless multimedia sensor networks. Computer Networks, 51(4), 921–960.

    Article  Google Scholar 

  2. Akyildiz, I. F., Melodia, T., & Chowdury, K. R. (2007). Wireless multimedia sensor networks: A survey. IEEE Wireless Communications, 14(6), 32–39.

    Article  Google Scholar 

  3. Alvi, S. A., Shah, G. A., & Mahmood, W. (2015). Energy efficient green routing protocol for internet of multimedia things. In 2015 IEEE tenth international conference on intelligent sensors, sensor networks and information processing (ISSNIP), IEEE (pp. 1–6).

  4. Banerjee, R., & Bit, S. D. (2019). An energy efficient image compression scheme for wireless multimedia sensor network using curve fitting technique. Wireless Networks, 25(1), 167–183.

    Article  Google Scholar 

  5. Banh, M., Mac, H., Nguyen, N., Phung, K. H., Thanh, N. H., & Steenhaut, K. (2015). Performance evaluation of multiple RPL routing tree instances for internet of things applications. In 2015 international conference on advanced technologies for communications (ATC), IEEE (pp. 206–211).

  6. Barcelo, M., Correa, A., Vicario, J. L., & Morell, A. (2016). Cooperative interaction among multiple RPL instances in wireless sensor networks. Computer Communications, 81, 61–71.

    Article  Google Scholar 

  7. Bouzebiba, H., & Lehsaini, M. (2020). FreeBW-RPL: A new RPL protocol objective function for internet of multimedia things. Wireless Personal Communications, 112, 1–21.

    Article  Google Scholar 

  8. Brandt, A., Buron, J., & Porcu, G. (2010). Home automation routing requirements in low-power and lossy networks. RFC 5826, RFC Editor. http://www.rfc-editor.org/rfc/rfc5826.txt

  9. Busnel, Y., Bertier, M., Fleury, E., & Kermarrec, A. M. (2007). GCP: Gossip-based code propagation for large-scale mobile wireless sensor networks. Tech. rep., INRIA.

  10. Conta, A., Deering, S., & Gupta, M. (2006). Internet control message protocol (icmpv6) for the internet protocol version 6 (IPv6) specification. RFC 4443, RFC Editor. http://www.rfc-editor.org/rfc/rfc4443.txt

  11. Dohler, M., Watteyne, T., Winter, T., & Barthel, D. (2009). Routing requirements for urban low-power and lossy networks. RFC 5548, RFC Editor.

  12. Dunkels, A., Gronvall, B., & Voigt, T. (2004). Contiki-a lightweight and flexible operating system for tiny networked sensors. In 29th annual IEEE international conference on local computer networks, IEEE (pp. 455–462).

  13. Gaddour, O., Koubâa, A., Baccour, N., & Abid, M. (2014). OF-FL: QoS-aware fuzzy logic objective function for the RPL routing protocol. In: 2014 12th International symposium on modeling and optimization in mobile, ad hoc, and wireless networks (WiOpt), IEEE (pp. 365–372).

  14. Gardašević, G., Veletić, M., Maletić, N., Vasiljević, D., Radusinović, I., Tomović, S., et al. (2017). The IoT architectural framework, design issues and application domains. Wireless Personal Communications, 92(1), 127–148.

    Article  Google Scholar 

  15. Gnawali, O., & Levis, P. (2012). The minimum rank with hysteresis objective function. RFC 6719, RFC Editor. http://www.rfc-editor.org/rfc/rfc6719.txt

  16. Gonizzi, P., Monica, R., & Ferrari, G. (2013). Design and evaluation of a delay-efficient RPL routing metric. In 2013 9th international wireless communications and mobile computing conference (IWCMC), IEEE (pp. 1573–1577).

  17. Gürses, E., & Akan, Ö. B. (2005). Multimedia communication in wireless sensor networks. Annales des Télécommunications, 60, 872–900.

    Google Scholar 

  18. Idrees, A. K., & Witwit, A. Energy-efficient load-balanced RPL routing protocol for internet of things (IOTs) networks. International Journal of Internet Technology and Secured Transactions (In press)

  19. Kettouche, S., Maimour, M., & Derdouri, L. (2019). QoE-based performance evaluation of video transmission using RPL in the IoMT. In 2019 7th Mediterranean congress of telecommunications (CMT), IEEE (pp. 1–4).

  20. Kim, H. S., Ko, J., Culler, D. E., & Paek, J. (2017). Challenging the IPv6 routing protocol for low-power and lossy networks (RPL): A survey. IEEE Communications Surveys & Tutorials, 19(4), 2502–2525.

    Article  Google Scholar 

  21. Lamaazi, H., & Benamar, N. (2020). A comprehensive survey on enhancements and limitations of the RPL protocol: A focus on the objective function. Ad Hoc Networks, 96, 102001.

    Article  Google Scholar 

  22. Levis, P., Clausen, T., Hui, J., Gnawali, O., & Ko, J. (2011). The trickle algorithm. RFC 6206, RFC Editor. http://www.rfc-editor.org/rfc/rfc6206.txt

  23. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., et al. (2005). TinyOS: An operating system for sensor networks. Ambient intelligence (pp. 115–148). Berlin: Springer.

    Chapter  Google Scholar 

  24. Li, Z. N., Drew, M. S., & Liu, J. (2014). Fundamentals of multimedia. Cham: Springer.

    Book  Google Scholar 

  25. Loeffler, C., Ligtenberg, A., & Moschytz, G. S. (1989). Practical fast 1-D DCT algorithms with 11 multiplications. In International conference on acoustics, speech, and signal processing, IEEE (pp. 988–991).

  26. Long, N. T., Uwase, M. P., Tiberghien, J., & Steenhaut, K. (2013). QoS-aware cross-layer mechanism for multiple instances RPL. In 2013 international conference on advanced technologies for communications (ATC), IEEE (pp. 44–49).

  27. M.2370-0, R.I.R. IMT traffic estimates for the years 2020 to 2030. Retrieved from 07 March 2020. https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2370-2015-PDF-E.pdf

  28. Maimour, M. (2018). Sensevid: A traffic trace based tool for QoE video transmission assessment dedicated to wireless video sensor networks. Simulation Modelling Practice and Theory, 87, 120–137.

    Article  Google Scholar 

  29. Martocci, J., Mil, P. D., Riou, N., & Vermeylen, W. (2010). Building automation routing requirements in low-power and lossy networks. RFC 5867, RFC Editor. http://www.rfc-editor.org/rfc/rfc5867.txt

  30. Monowar, M. M., & Basheri, M. (2020). On providing differentiated service exploiting multi-instance RPL for industrial low-power and lossy networks. Wireless Communications and Mobile Computing, 2020, Article ID 1748647, pp.1-12.

    Google Scholar 

  31. Mortazavi, F., & Khansari, M. (2018). An energy-aware RPL routing protocol for internet of multimedia things. In Proceedings of the international conference on smart cities and internet of things, ACM (p. 11).

  32. Nassar, J., Berthomé, M., Dubrulle, J., Gouvy, N., Mitton, N., & Quoitin, B. (2018). Multiple instances QoS routing in RPL: Application to smart grids. Sensors, 18(8), 2472.

    Article  Google Scholar 

  33. Nassar, J., Gouvy, N., & Mitton, N. (2017). Towards multi-instances QoS efficient RPL for smart grids. In Proceedings of the 14th ACM symposium on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks (pp. 85–92).

  34. Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., & Voigt, T. (2006) Cross-level sensor network simulation with COOJA. In Proceedings of the 2006 31st IEEE conference on local computer networks, IEEE (pp. 641–648).

  35. Pister, K., Thubert, P., Dwars, S., & Phinney, T. (2009). Industrial routing requirements in low-power and lossy networks. RFC 5673, RFC Editor. http://www.rfc-editor.org/rfc/rfc5673.txt

  36. Reddy, G. R. S., et al. (2019). A taxonomy of issues, challenges and applications in internet of multimedia things (IoMMT). i-manager’s Journal on Cloud Computing, 6(1), 1.

    Article  MathSciNet  Google Scholar 

  37. Richardson, I. E. G. (2003). H.264 and MPEG-4 Video Compression Video Coding for Next-generation Multimedia. Chichester: Wiley.

    Book  Google Scholar 

  38. Sayood, K. (2006). Introduction to data compression.  Elsevier.

    MATH  Google Scholar 

  39. Tahir, Y., Yang, S., & McCann, J. (2017). BRPL: Backpressure RPL for high-throughput and mobile IoTs. IEEE Transactions on Mobile Computing, 17(1), 29–43.

    Article  Google Scholar 

  40. Taylor, C. N., Panigrahi, D., & Dey, S. (2001). Design of an adaptive architecture for energy efficient wireless image communication. In International workshop on embedded computer systems (pp. 260–273), Springer.

  41. Thubert, P. (2012). Objective function zero for the routing protocol for low-power and lossy networks (RPL). RFC 6552, RFC Editor. http://www.rfc-editor.org/rfc/rfc6552.txt

  42. Todolí-Ferrandis, D., Santonja-Climent, S., Sempere-Payá, V., & Silvestre-Blanes, J. (2015). RPL routing in a real life scenario with an energy efficient objective function. In 2015 23rd Telecommunications Forum Telfor (TELFOR), IEEE (pp. 285–288).

  43. Tran, T. D. (1999). A fast multiplierless block transform for image and video compression. In Proceedings 1999 international conference on image processing (Cat. 99CH36348), IEEE (Vol. 3, pp. 822–826).

  44. Vasseur, J., Kim, M., Pister, K., Dejean, N., & Barthel, D. (2012). Routing metrics used for path calculation in low-power and lossy networks. RFC 6551, RFC Editor. http://www.rfc-editor.org/rfc/rfc6551.txt

  45. Wiegand, T., Sullivan, G. J., Bjontegaard, G., & Luthra, A. (2003). Overview of the H. 264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 13(7), 560–576.

    Article  Google Scholar 

  46. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, J., & Alexander, R. (2012). RPL: IPv6 routing protocol for low-power and lossy networks. RFC 6550, RFC Editor. http://www.rfc-editor.org/rfc/rfc6550.txt

  47. Witwit, A. J., & Idrees, A. K. (2018). A comprehensive review for RPL routing protocol in low power and lossy networks. In International conference on new trends in information and communications technology applications (pp. 50–66), Springer.

  48. Yang, M., & Bourbakis, N. (2005). An overview of lossless digital image compression techniques. In 48th midwest symposium on circuits and systems, 2005, IEEE (pp. 1099–1102).

  49. YUV Video Sequences. Retrieved from 08 January 2020. http://trace.kom.aau.dk/yuv/index.html

  50. ZainEldin, H., Elhosseini, M. A., & Ali, H. A. (2015). Image compression algorithms in wireless multimedia sensor networks: A survey. Ain Shams Engineering Journal, 6(2), 481–490.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibtissem Bouacheria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouacheria, I., Bidai, Z., Kechar, B. et al. Leveraging Multi-Instance RPL Routing Protocol to Enhance the Video Traffic Delivery in IoMT. Wireless Pers Commun 116, 2933–2962 (2021). https://doi.org/10.1007/s11277-020-07828-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07828-8

Keywords

Navigation