Skip to main content

Advertisement

Log in

Ten Commandments of Emerging 5G Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Insightful choice of enabling technologies tend to effectuate a smooth transition from legacy networks to fifth generation wireless communication systems (5G). Future wireless networks must address exponential growth in connectivity, capacity and services, while perpetuating energy and cost reductions. It is therefore, crucial to intelligently evaluate key contenders of 5G evolution. This article provides an overview of ten fundamental concepts that could impact 5G framework. An outline of expected benefits is deliberated in this paper. We discuss compelling need of a new spectrum followed by associated changes in terms of air interface, architecture and MAC layer protocols. For alleviating access complexity in diverse-dense 5G deployment, we make a review on Heterogeneous-Cloud Radio Access Networks and Software Defined Networking. We also discuss two disruptive approaches with high research challenges, non orthogonality and full duplex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  2. Rappaport, T. S., Roh, W., & Cheun, K. (2014). Wireless engineers long considered high frequencies worthless for cellular systems. They couldn’t be more wrong. IEEE SPECTRUM, 51(9), 34–58.

    Article  Google Scholar 

  3. Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. In IEEE Communications Surveys & Tutorials, 18(3), 1617–1655.

    Article  Google Scholar 

  4. Chandra, K., Prasad, R. V., Quang, B., & Niemegeers, I. G. M. M. (2015). CogCell: Cognitive interplay between 60 GHz picocells and 2.4/5 GHz hotspots in the 5G era. IEEE Communications Magazine, 53(7), 118–125.

    Article  Google Scholar 

  5. GSMA Intelligence. (2014). ANALYSIS understanding 5G: Perspectives on future technological advancements in mobile, white paper.

  6. Chen, S., & Zhao, J. (2014). The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Communications Magazine, 52(5), 36–43.

    Article  Google Scholar 

  7. 5G Forum. Make it happen: Creating new values together. http://www.5gforum.org/.

  8. 5G-Infrastructure Public–Private Partnership (2013). http://5g-ppp.eu/.

  9. Osseiran, A., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.

    Article  Google Scholar 

  10. European Commission. HORIZON 2020, The EU Framework Programme for Research and Innovation. http://ec.europa.eu/programmes/horizon2020/.

  11. Training and Certification, An initiative project in preparing 5G competence. http://www.ieee-5g.org/about/.

  12. NTT Docomo. (2015). 5G radio access : Requirements, concepts technologies, white paper.

  13. Ericsson (2015) 5G radio access, white paper.

  14. Huawei. (2013). 5G a technology vision, white paper.

  15. Nokia Networks. (2014) . Looking ahead to 5G: Building a virtual zero latency gigabit experience, white paper.

  16. Qualcomm Technologies Inc. (2014). Qualcomm 5G vision, white paper.

  17. Samsung Electronics Co. (2015). 5G Vision, white paper.

  18. Prasad, R. (2014). 5G: 2020 and beyond. Denmark: River Publishers.

    Google Scholar 

  19. 3GPP TR 38.802 v2.0. (2017). Study on new radio (NR) access technology; physical layer aspects.

  20. 3GPP RP-160671. (2016). Study on new radio access technology, NTT DOCOMO.

  21. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376.

    Article  Google Scholar 

  22. Shariatmadari, H., et al. (2015). Machine-type communications: Current status and future perspectives toward 5G systems. IEEE Communications Magazine, 53(9), 10–17.

    Article  Google Scholar 

  23. Palattella, M. R., et al. (2016). Internet of things in the 5G era: Enablers, architecture, and business models. In IEEE Journal on Selected Areas in Communications, 34(3), 510–527.

    Article  Google Scholar 

  24. Kwon, S. W., et al. (2014). Performance analysis of DRX mechanism considering analogue beamforming in millimeter-wave mobile broadband system. In IEEE Globecom workshops (pp. 802–807).

  25. Prasad, R., Ohmori, S., & Simunic, D. (Eds.). (2010). Towards green ICT (Vol. 9). Denmark: River Publishers.

    Google Scholar 

  26. Maheshwari, M. K., Agiwal, M., Saxena, N., & Roy, A. (2017). Hybrid directional discontinuous reception (HD-DRX) for 5G communication. In IEEE Communications Letters, 21(6), 1421–1424.

  27. Pereira, C., et al. (2016). Smartphones as M2M gateways in smart cities IoT applications. In 23rd international conference on telecommunications (ICT), Thessaloniki.

  28. Anggorojati, B., Prasad N. R., & Prasad, R. (2016). Elliptic curve cryptography based key management for the M2M local cloud platform. In International conference on advanced computer science and information systems (ICACSIS) (pp. 73–78), Malang.

  29. Chaudhari, M. S., & Prasad, R. (2015). Energy saving dynamic level scheduling with energy estimation and monitoring in homogeneous multiprocessor system. In Global conference on communication technologies (GCCT) (pp. 49–54), Thuckalay.

  30. Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., & Sabella, D. (2017). On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Communications Surveys & Tutorials., 9(3), 1657–1681.

    Article  Google Scholar 

  31. Craciunescu, R., Mihovska, A., Mihaylov, M., Kyriazakos, S., Prasad, R., & Halunga, S. (2015). Implementation of Fog computing for reliable E-health applications. In 49th Asilomar conference on signals, systems and computers (pp. 459–463), Pacific Grove, CA.

  32. Stallings, W. (2007). Data and computer communications. Englewood Cliffs, NJ: Pearson/Prentice Hall.

    MATH  Google Scholar 

  33. Bangerter, B., Talwar, S., Arefi, R., & Stewart, K. (2014). Intel networks and devices for the 5G era. IEEE Communications Magazine, 52(2), 90–96.

    Article  Google Scholar 

  34. Khan, F., Zhouyue, P., & Rajagopal, S. (2012). Millimeter-wave mobile broadband with large scale spatial processing for 5G mobile communication. In 50th annual Allerton conference on communication, control, and computing (Allerton) (pp. 1517–1523).

  35. Rappaport, T. S., Gutierrez, F., Ben-Dor, E., Murdock, J. N., Qiao, Y., & Tamir, J. I. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Transactions on Antennas and Propagation, 61(4), 1850–1859.

    Article  Google Scholar 

  36. Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.

    Article  Google Scholar 

  37. Adhikari, P. (2008). Understanding millimeter wave wireless communication, white paper, Loea Corporation.

  38. Huo, Y., Dong, X., & Xu, W. (2017). 5G cellular user equipment: From theory to practical hardware design. IEEE Access, 5, 13992–14010.

    Article  Google Scholar 

  39. Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80.

    Article  Google Scholar 

  40. Kumar, A., Mehta, P. L., & Prasad, R. (2014). Place time capacity—A novel concept for defining challenges in 5G networks and beyond in India. In IEEE Global Conference on Wireless Computing & Networking (GCWCN) (pp. 278–282), Lonavala.

  41. Korakis, T., Jakllari, G., & Tassiulas, L. (2003). A MAC protocol for full exploitation of directional antennas in ad-hoc wireless networks. In ACM proceedings of the international symposium on Mobile ad hoc networking & computing (pp. 97–108).

  42. Zhouyue, P., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.

    Article  Google Scholar 

  43. Zhouyue, P., & Khan, F. (2011). System design and network architecture for a millimeter-wave mobile broadband (mmb) system. In: IEEE Sarnoff Symposium (pp. 1–6).

  44. Roh, W., Seol, J. Y., Park, J., Lee, B., Lee, J., Kim, Y., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.

    Article  Google Scholar 

  45. Vook, F. W., Ghosh, A., & Thomas, T. A. (2014). MIMO and beamforming solutions for 5G technology. In IEEE Microwave Symposium (IMS) (pp. 1–4).

  46. Rajagopal, S. (2012). Beam broadening for phased antenna arrays using multi-beam subarrays. In IEEE international conference on communications (pp. 3637–3642).

  47. Kim, J., Lee, H. W., & Chong, S. (2014). Virtual cell beamforming in cooperative networks. IEEE Journal on Selected Areas in Communications, 32(6), 1126–1138.

    Article  Google Scholar 

  48. 3GPP TR 38.900 V14.3.0. (2017). Study on channel model for frequency spectrum above 6 GHz.

  49. Tsang, Y. M., Poon, A. S. Y., & Addepalli, S. (2011). Coding the beams: Improving beamforming training in mm-wave communication system. In IEEE global telecommunications conference (pp. 1–6).

  50. Rappaport, T. S., Gutierrez, F., Ben-Dor, E., Murdock, J. N., Qiao, Y., & Tamir, J. I. (2013). Broadband millimeter wave propagation measurements and models using adaptive beam antennas for outdoor urban cellular communications. IEEE Transactions on Antennas and Propagation, 61(4), 1850–1859.

    Article  Google Scholar 

  51. Xia, P., Yong, S.K., Oh, J., & Ngo, C. (2008). Multi-stage iterative antenna training for millimeter wave communications. In IEEE globecom global telecommunications conference (pp. 1–6).

  52. Tsang, Y. M., & Poon, A. S. Y. (2011). Detecting human blockage and device movement in mmWave communication system. In Global telecommunications conference, Globecom (pp. 1–6).

  53. Tserenlkham, B., & Batdalai, S. (2013). Antenna tracking system for broadband portable terminal. IEEE International Forum on Strategic Technology, 2, 159–162.

    Google Scholar 

  54. Sun, S., Rappaport, T. S., Heath, R. W., Nix, A., & Rangan, S. (2014). Mimo for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both? IEEE Communications Magazine, 52(12), 110–121.

    Article  Google Scholar 

  55. Larsson, E., Edfors, O., Tufvesson, F., & Marzetta, T. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.

    Article  Google Scholar 

  56. Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–345.

    Article  Google Scholar 

  57. Anderson, C. R., & Rappaport, T. S. (2004). In-building wideband partition loss measurements at 2.5 and 60 GHz. IEEE Transactions on Wireless Communications, 3(3), 922–928.

    Article  Google Scholar 

  58. Kyro, M., Kolmonen, V., & Vainikainen, P. (2012). Experimental propagation channel characterization of mm-wave radio links in urban scenarios. IEEE Antennas and Wireless Propagation Letters, 11, 865–868.

    Article  Google Scholar 

  59. Collonge, S., Zaharia, G., & Zein, G. E. (2004). Influence of the human activity on wide-band characteristics of the 60 GHz indoor radio channel. IEEE Transactions on Wireless Communications, 3(6), 2396–2406.

    Article  Google Scholar 

  60. Rappaport, T. S., Ben-Dor, E., Murdock, J. N., & Qiao, Y. (2012). 38 GHz and 60 GHz angle-dependent propagation for cellular & peer-to-peer wireless communications. In IEEE international conference on communications (pp. 4568–4573).

  61. Wang, Y., Xu, J., & Jiang, L. (2014). Challenges of system-level simulations and performance evaluation for 5G wireless networks. IEEE Access, 2, 1553–1561.

    Article  Google Scholar 

  62. Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.

    Article  Google Scholar 

  63. Wang, C. X., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.

    Article  Google Scholar 

  64. Mehmood, Y., Afzal, W., Ahmad, F., Younas, U., Rashid, I., & Mehmood, I. (2013). Large scaled multi-user MIMO system so called massive MIMO systems for future wireless communication networks. In International conference on automation and computing (pp. 1–4).

  65. Xiang, Z., Tao, M., & Wang, X. (2014). Massive MIMO multicasting in noncooperative cellular networks. IEEE Journal on Selected Areas in Communications, 32(6), 1180–1193.

    Article  Google Scholar 

  66. Zeng, Y., Zhang, R., & Chen, Z. N. (2014). Electromagnetic lens-focusing antenna enabled massive MIMO: Performance improvement and cost reduction. IEEE Journal on Selected Areas in Communications, 32(6), 1194–1206.

    Article  Google Scholar 

  67. Liu, W., Han, S., Yang, C., & Sun, C. (2013). Massive MIMO or small cell network: Who is more energy efficient? In IEEE Wireless Communications and Networking Conference Workshops (pp. 24–29).

  68. Bronckers, S., Roc’h, A., & Smolders, B. (2017). Wireless receiver architectures towards 5G: Where are we? IEEE Circuits and Systems Magazine, 17(3), 6–16.

    Article  Google Scholar 

  69. Khan, M. T., & Shaik, R. A. (2017). An energy efficient VLSI architecture of decision feedback equalizer for 5G communication system. In IEEE Journal on Emerging and Selected Topics in Circuits and Systems, PP(99), 1–1.

    Google Scholar 

  70. Xia, P., Yong, S.K., Oh, J., & Ngo, C. (2008). A practical SDMA protocol for 60 GHz millimeter wave communications. In 42nd Asilomar conference signals, systems and computers (pp. 2019–2023).

  71. Ogawa, H. (2001). Millimeter-wave wireless access systems. In IEEE Microwave Conference, Asia-Pacific (Vol. 2, 487–491).

  72. Gong, M. X., Akhmetov, D., Want, R., & Mao, S. (2011). Multi-user operation in mmWave wireless networks. IEEE international conference on communications (pp. 1–6).

  73. Qiao, J., Shen, X., Mark, J., Shen, Q., He, Y., & Lei, L. (2015). Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Communications Magazine, 53(1), 209–215.

    Article  Google Scholar 

  74. Choudhury, R. R., Yang, X., Ramanathan, R., & Vaidya, N. F. (2006). On designing MAC protocols for wireless networks using directional antennas. IEEE Transactions on Mobile Computing, 5(5), 477–491.

    Article  Google Scholar 

  75. Wunder, G., Jung, P., Kasparick, M., Wild, T., Schaich, F., Chen, Y., et al. (2014). 5GNOW: Non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Communications Magazine, 52(2), 97–105.

    Article  Google Scholar 

  76. Michailow, N., Gaspar, I., Krone, S., Lentmaier, M., & Fettweis, G. (2012). Generalized frequency division multiplexing: Analysis of an alternative multi-carrier technique for next generation cellular systems. In International symposium on wireless communication systems (pp. 171–175).

  77. Niroopan, P., & Chung, Y. H. (2012). A user-spread interleave division multiple access system. International Journal of Advanced Research in Computer and Communication Engineering, 1(10), 837–841.

    Google Scholar 

  78. Hosein, N., & Hadi, B. (2013). Sparse code multiple access personal indoor and mobile radio communications (PIMRC). In IEEE 24th international symposium (pp. 332–336).

  79. Kim, J., & Kim, I. G. (2013). Distributed antenna system-based millimeter-wave mobile broadband communication system for high speed trains. In IEEE international conference on ICT convergence (pp. 218–222).

  80. Sahin, A., Guvenc, I., & Arslan, H. (2014). A survey on multicarrier communications: Prototype filters, lattice structures, and implementation aspects. IEEE Communications Surveys & Tutorials, 16(3), 1312–1338.

    Article  Google Scholar 

  81. Fettweis, G., & Alamouti, S. (2014). 5G: Personal mobile internet beyond what cellular did to telephony. IEEE Communications Magazine, 52(2), 140–145.

    Article  Google Scholar 

  82. Physical layer for dynamic spectrum access and cognitive radio. http://www.ict-phydyas.org.

  83. Dore, J.-B., Berg, V., & Ktenas, D. (2014). Performance of FBMC multiple access for relaxed synchronization cellular networks. In Globecom Workshops (pp. 983–988).

  84. Li, Q. C., Wu, G. & Rappaport, T.S. (2014). Channel model for millimeter-wave communications based on geometry statistics. In IEEE globecom workshops (pp. 427–432).

  85. Bellanger, M. (2008). Physical layer for future broadband radio systems. Report PHYDYAS.

  86. Bellanger, M. (2012). FS-FBMC: An alternative scheme for filter bank based multicarrier transmission. In Communications control and signal processing international symposium (pp. 1–4).

  87. Waldhauser, D. S., Baltar, L. G., & Nossek, J. (2008). MMSE subcarrier equalization for filter bank based multicarrier systems. In IEEE workshop on signal processing advances in wireless communications (pp. 525–529).

  88. Medjahdi, Y., Terre, M., Le Ruyet, D., & Roviras, D. (2011). On spectral efficiency of asynchronous OFDM/FBMC based cellular networks. IEEE international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 1381–1385).

  89. Liu, C. Y., Sie, M. S., Leong, E. W. J., et al. (2016). An 8X-parallelism memory access reordering polyphase network for 60 GHz FBMC-OQAM baseband receiver. IEEE Transactions on Circuits and Systems, 63(12), 2347–2356.

    Article  Google Scholar 

  90. Shaat, M., & Bader, F. (2010). An uplink resource allocation algorithm for OFDM and FBMC based cognitive radio systems. In International conference on cognitive radio oriented wireless networks & communications (pp. 1–6).

  91. Liu, Y., Zhang, Y., Yu, R., & Xie, S. (2015). Integrated energy and spectrum harvesting for 5G wireless communications. IEEE Network, 29(3), 75–81.

    Article  Google Scholar 

  92. Danneberg, M., Datta, R., Festag, A., & Fettweis, G. (2014). Experimental testbed for 5G cognitive radio access in 4G LTE cellular systems. In IEEE workshop on sensor array and multichannel signal processing (pp. 321–324).

  93. Papanikolaou, D. E., Papanikolaou, N. E., Pitsiladis, G. T., Panagopoulos, A. D., & Constantinou, P. (2011). Spectrum sensing in mm-wave cognitive radio networks under rain fading. In Proceedings of the 5th European conference on antennas and propagation (EUCAP) (pp. 1684–1687).

  94. Demestichas, P., Georgakopoulos, A., Karvounas, D., Tsagkaris, K., Stavroulaki, V., Jianmin, L., et al. (2013). 5G on the horizon: Key challenges for the radio-access network. IEEE Vehicular Technology Magazine, 8(3), 47–53.

    Article  Google Scholar 

  95. Mumtaz, S., Saidul Huq, K. M., Ashraf, M. I., Rodriguez, J., Monteiro, V., & Politis, C. (2015). Cognitive vehicular communication for 5G. IEEE Communications Magazine, 53(7), 109–117.

    Article  Google Scholar 

  96. Lun, J., & Grace, D. (2014). Cognitive green backhaul deployments for future 5G networks. In 1st international workshop on cognitive cellular systems (CCS) (pp. 1–5).

  97. Ziegler, V., Theimer, T., Sartori, C., Prade, J., Sprecher, N., Albal, K., et al. (2015). Architecture vision for the 5G era: Cognitive and cloud network evolution. In IEEE vehicular technology conference (VTC Spring) (pp. 1–6).

  98. Peng, M., Li, Y., Zhao, Z., & Wang, C. (2015). System architecture and key technologies for 5G heterogeneous cloud radio access networks. IEEE Network, 29(2), 6–14.

    Article  Google Scholar 

  99. Peng, M., Zhang, K., Jiang, J., Wang, J., & Wang, W. (2014). Energy-efficient resource assignment and power allocation in heterogeneous cloud radio access networks. IEEE Transactions on Vehicular Technology, 99, 1–13.

    Google Scholar 

  100. Cvijetic, N. (2014). Optical network evolution for 5G mobile applications and SDN-based control. In International telecommunications network strategy and planning symposium (pp. 1–5).

  101. Peng, M., Li, Y., Jiang, J., Li, J., & Wang, C. (2014). Heterogeneous cloud radio access networks: A new perspective for enhancing spectral and energy efficiencies. IEEE Wireless Communications, 21(6), 126–135.

    Article  Google Scholar 

  102. Saxena, N., Roy, A., Sahu, B. J. R., & Kim, H. (2017). Efficient IoT gateway over 5G wireless: A new design with prototype and implementation results. IEEE Communications Magazine, 55(2), 97–105.

    Article  Google Scholar 

  103. Chen, K., & Duan, R. (2011). C-RANthe road towards green RAN, white paper. China Mobile Research Institute.

  104. Mushtaq, M. S., Fowler, S., & Mellouk, A. (2017). Power saving model for mobile device and virtual base station in the 5G era. In IEEE international conference on communications (ICC), Paris.

  105. Al-Azez, Z. T., Lawey, A. Q., El-Gorashi, T. E. H., & Elmirghani, J. M. H. (2016). Energy efficient IoT virtualization framework with passive optical access networks. In 18th international conference on transparent optical networks (ICTON), Trento.

  106. Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A. H., & Leung, V. C. M. (2017). Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Communications Magazine, 55(8), 138–145.

    Article  Google Scholar 

  107. Checko, A., Christiansen, H. L., Yan, Y., Scolari, L., Kardaras, G., Berger, M. S., et al. (2015). Cloud RAN for mobile networks—A technology overview. IEEE Communication Surveys & Tutorials, 17(1), 405–426.

    Article  Google Scholar 

  108. Cho, H. H., Lai, C. F., Shih, T. K., & Chao, H. C. (2014). Integration of SDR and SDN for 5G. IEEE Access, 2, 1196–1204.

    Article  Google Scholar 

  109. Banikazemi, M., Olshefski, D., Shaikh, A., Tracey, J., & Wang, G. (2013). Meridian: An SDN platform for cloud network services. IEEE Communications Magazine, 51(2), 120–127.

    Article  Google Scholar 

  110. Huawei. (2016). 5G network architecture—A high level perspective, white paper.

  111. Goldhamer, M. (2017). Towards a 5G mobile architecture standardisation update. Coordinated control and spectrum management for 5G heterogeneous radio access networks, Coherent-PPT.

  112. Huawei. (2017). Cloud RAN and the next generation mobile network, white paper.

  113. China Mobile. (2017). C-RAN: Moving towards cloudification, white paper.

  114. Abd El-atty, S. M., & Gharsseldien, Z. M. (2013). On performance of HetNet with coexisting small cell technology. In IEEE wireless and mobile networking conference (pp. 1–8).

  115. Huq, K. M. S., Mumtaz, S., Alam, M., Rodriguez, J., & Aguiar, R. L. (2013). Frequency allocation for HetNet CoMP: Energy efficiency analysis. In Proceedings international symposium on wireless communication systems (pp. 1–5).

  116. Velez, F. J., Sousa, S., Mihovska, A., & Prasad, R. (2016). ’Basic limits for LTE-Advanced radio and HetNet optimization in the outdoor-to-indoor scenario. In IEEE international black sea conference on communications and networking (BlackSeaCom), Varna.

  117. Wang, Z., Li, H., Wang, H., & Ci, S. (2013). Probability weighted based spectral resources allocation algorithm in Hetnet under Cloud-RAN architecture. In International conference on communications in china-workshops (pp. 88–92).

  118. Xu, J., Wang, J., Zhu, Y., Yang, Y., Zheng, X., Wang, S., et al. (2014). Cooperative distributed optimization for the hyper-dense small cell deployment. IEEE Communications Magazine, 52(5), 61–67.

    Article  Google Scholar 

  119. Nam, W., Bai, D., Lee, J., & Kang, I. (2014). Advanced interference management for 5G cellular networks. IEEE Communications Magazine, 52(5), 52–60.

    Article  Google Scholar 

  120. Galinina, O., Andreev, S., Gerasimenko, M., Koucheryavy, Y., Himayat, N., Shu-Ping, Y., et al. (2014). Capturing spatial randomness of heterogeneous cellular/WLAN deployments with dynamic traffic. IEEE Journal on Selected Areas in Communications, 32(6), 1083–1099.

    Article  Google Scholar 

  121. Talwar, S., Choudhury, D., Dimou, K., Aryafar, E., Bangerter, B., & Stewart, K. (2014). Enabling technologies and architectures for 5G wireless. In Microwave Symposium (IMS) (pp. 1–4). MTT-S International.

  122. Lee, Y. L., Chuah, T. C., Loo, J., & Vinel, A. (2014). Recent advances in radio resource management for heterogeneous LTE/LTE-A networks. IEEE Communication Surveys & Tutorials, 16(4), 2142–2180.

    Article  Google Scholar 

  123. Han, F., Zhao, S., Zhang, L., & Wu, J. (2016). Survey of strategies for switching off base stations in heterogeneous networks for greener 5G systems. IEEE Access, 4, 4959–4973.

    Article  Google Scholar 

  124. Lai, C. F., Hwang, R. H., Chao, H. C., Hassan, M., & Alamri, A. (2015). A buffer-aware HTTP live streaming approach for SDN-enabled 5G wireless networks. IEEE Network, 29(1), 49–55.

    Article  Google Scholar 

  125. Agyapong, P., Iwamura, M., Staehle, D., Kiess, W., & Benjebbour, A. (2014). Design considerations for a 5G network architecture. IEEE Communications Magazine, 52(11), 65–75.

    Article  Google Scholar 

  126. Arslan, M., Sundaresan, K., & Rangarajan, S. (2015). Software-defined networking in cellular radio access networks: Potential and challenges. IEEE Communications Magazine, 53(1), 150–156.

    Article  Google Scholar 

  127. Jin, X., Li, L. E., Vanbever, L., & Rexford, J. (2013). Softcell: Scalable and flexible cellular core network architecture. In ACM emerging networking experiments and technologies (pp. 163–174).

  128. Pentikousis, K., Wang, Y., & Hu, W. (2013). Mobileflow: Toward software-defined mobile networks. IEEE Communications Magazine, 51, 4453.

    Article  Google Scholar 

  129. Moradi, M., Wu, W., Li, L. E., & Mao, Z. M. (2014). SoftMoW: Recursive and reconfigurable cellular WAN architecture. in ACM emerging networking experiments and technologies (pp. 377–390).

  130. Basta, A., Blenk, A., Hoffmann, K., Morper, H. J., Hoffmann, M., & Kellerer, W. (2017). Towards a cost optimal design for a 5G mobile core network based on SDN and NFV. In IEEE Transactions on Network and Service Management, PP(99), 1–1.

    Google Scholar 

  131. Kempf, J., Johansson, B., Pettersson, S., Luning, H., & Nilsson, T. (2012). Moving the mobile evolved packet core to the cloud. In IEEE wireless and mobile computing, networking and communications (WiMob) (pp. 784–791).

  132. Michailow, N., Matthe, M., Gaspar, I. S., Caldevilla, A. N., Mendes, L. L., Festag, A., et al. (2014). Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Communications Transactions, 62(9), 3045–3061.

    Article  Google Scholar 

  133. Chen, Y., Schaich, F., & Wild, T. (2014). Multiple access and waveforms for 5G: IDMA and universal filtered multi-carrier. In IEEE 79th vehicular technology conference (VTC Spring).

  134. Schaich, F., Wild, T., & Chen, Y. (2014). Waveform contenders for 5G-suitability for short packet and low latency transmissions. In IEEE 79th vehicular technology conference (VTC Spring).

  135. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., et al. (2014). Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.

    Article  Google Scholar 

  136. Wunder, G., Kasparick, M., ten Brink, S., Schaich, F., Wild, T., Chen, Y., et al. (2013). System-level interfaces and performance evaluation methodology for 5G physical layer based on non-orthogonal waveforms. In 2013 Asilomar conference on signals, systems and computers (pp. 1659–1663).

  137. Wunder, G., Kasparick, M., ten Brink, S., Schaich, F., Wild, T., Gaspar, I., et al. (2013). 5GNOW: Challenging the LTE design paradigms of orthogonality and synchronicity. In IEEE vehicular technology conference (VTC Spring) (pp. 1–5, 2–5).

  138. Goyal, S., Liu, P., Panwar, S. S., Difazio, R. A., Yang, R., & Bala, E. (2015). Full duplex cellular systems: Will doubling interference prevent doubling capacity? IEEE Communications Magazine, 53(5), 121–127.

    Article  Google Scholar 

  139. Chen, G., Gong, Y., Xiao, P., & Chambers, J. A. (2015). Physical layer network security in the full-duplex relay system. IEEE Transactions on Information Forensics and Security, 10(3), 574–583.

    Article  Google Scholar 

  140. Ahmed, E., Eltawil, A. M., & Sabharwal, A. (2013). Rate gain region and design tradeoffs for full-duplex wireless communications. IEEE Transactions on Wireless Communications, 12(7), 3556–3565.

    Article  Google Scholar 

  141. Cheng, W., Zhang, X., & Zhang, H. (2013). RTS/FCTS mechanism based full-duplex MAC protocol for wireless networks. In Global communications conference (GLOBECOM) (pp. 5017–5022).

  142. Zheng, G. (2015). Joint beamforming optimization and power control for full-duplex MIMO two-way relay channel. IEEE Transactions on Signal Processing, 63(3), 555–566.

    Article  MathSciNet  Google Scholar 

  143. Xie, X., & Zhang, X. (2014). Does full-duplex double the capacity of wireless networks? In INFOCOM, Proceedings IEEE (pp. 253–261).

  144. Tang, A., & Wang, X. (2015). A-duplex: Medium access control for efficient coexistence between full-duplex and half-duplex communications. In IEEE Transactions on Wireless Communications, 14(10), 5871–5885.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education [NRF-2016R1D1A1B03935633].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navrati Saxena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agiwal, M., Saxena, N. & Roy, A. Ten Commandments of Emerging 5G Networks. Wireless Pers Commun 98, 2591–2621 (2018). https://doi.org/10.1007/s11277-017-4991-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4991-8

Keywords

Navigation