Skip to main content
Log in

Performance Evaluation of High Data Rate M-OAM UWB Physical Layer for Intelligent Transportation Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a high data rate modulation scheme for impulse radio ultra-wideband (IR-UWB) communication system using orthogonal waveforms is presented. The proposed M-state Orthogonal Amplitude Modulation (M-OAM) is evaluated under additive White Gaussian noise and indoor multipath channels IEEE.802.15. The simulation results show that the proposed system performance, in term of bit error rate (BER), is of the same order as that of the traditional UWB modulation. In addition, the M-OAM modulations provide a high data rate for short range wireless applications. Nevertheless, the multipath effect reduces the quality of transmission. Thus, the performances of three receiver architectures, that employ different pulse combining schemes, are investigated. Namely, a conventional matched filter receiver, a RAKE receiver and a minimum mean square error equalizer are considered. This study shows that the proposed M-OAM communication system offers good performances in term of quality of services, channel capacity and BER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shen, X., Guizani, M., Qiu, R. C., & Le-Ngoc, T. (Eds.). (2007). Ultra-wideband wireless communications and networks. Hoboken: Wiley.

    Google Scholar 

  2. Aiello, R., & Batra, A. (Eds.). (2006). Ultra wideband systems: Technologies and applications. Boston: Newnes.

    Google Scholar 

  3. Cheng, C. H., Lin, J. Y., & Wen, J. H. (2009). O3-based linear decorrelating detector for asynchronous UWB systems over multipath fading channels. AEU-International Journal of Electronics and Communications, 63(3), 158–167.

    Article  Google Scholar 

  4. Elbahhar, F., Rivenq-Menhaj, A., & Rouvaen, J. M. (2005). Multi-user ultra-wide band communication system based on modified gegenbauer and hermite functions. Wireless Personal Communications, 34(3), 255–277.

    Article  Google Scholar 

  5. Ghavami, M., Michael, L. B., & Kohno, R. (2004). UWB signals and systems.

  6. Liao, R., Bellalta, B., Barcelo, J., Valls, V., & Oliver, M. (2013). Performance analysis of IEEE 802.11 ac wireless backhaul networks in saturated conditions. EURASIP Journal on Wireless Communications and Networking, 2013(1), 1–14.

    Article  Google Scholar 

  7. Shaqiri I. (2013). Understanding IEEE 802.11ad. International Journal of Engineering Trends and Technology (IJETT), 4(7), 2770–2773.

    Google Scholar 

  8. Zhang, H., & Aaron Gulliver, T. (2005). Biorthogonal pulse position modulation for time-hopping multiple access UWB communications. IEEE Transactions on Wireless Communications, 4(3), 1154–1162.

    Article  Google Scholar 

  9. Shen, Y. S., Ueng, F. B., Kao, W. M., & Chang, J. C. (2012). N-Ary biorthogonal pulse position shape modulation for hybrid TH/DS multiple access UWB system. Vehicular Technology Conference (VTC Spring), 2012 IEEE 75th (pp. 1–5). IEEE.

  10. Shen, Y. S., & Ueng, F. B. (2011). A modified TH/DS multiple access UWB system using N-ary biorthogonal PPM. Wireless and Pervasive Computing (ISWPC), 6th International Symposium on 2011 (pp. 1–4). IEEE.

  11. Elabed, A., Elbahhar, F., Elhillali, Y., Rivenq, A., & Elassali, R. (2012). UWB communication system based on bipolar PPM with orthogonal waveforms. Wireless Engineering and Technology, 3, 181–188.

    Article  Google Scholar 

  12. Hamidoun, K., Elassali, R., Elhillali, Y., Elbahharr, F., & Rivenq, A. (2012). New adaptive architectures of coding and modulation UWB for infrastructure vehicle communication. 6th International Symposium on Signal, Image, Video and Communications, ISIVC 2012 (pp. paper-ID).

  13. Saleh, A. A., & Valenzuela, R. (1987). A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications, 5(2), 128–137.

    Article  Google Scholar 

  14. Cassioli, D., Win, M. Z., & Molisch, A. F. (2002). The ultra-wide bandwidth indoor channel: from statistical model to simulations. IEEE Journal on Selected Areas in Communications, 20(6), 1247–1257.

    Article  Google Scholar 

  15. Pagani, P., Pajusco, P., & Voinot, S. (2003). A study of the ultra-wide band indoor channel: Propagation experiment and measurement results. Proc. Int. Workshop on Ultra Wideband Systems.

  16. Molisch, A. F., Cassioli, D., Chong, C. C., Emami, S., Fort, A., Kannan, B., et al. (2006). A comprehensive standardized model for ultrawideband propagation channels. IEEE Transactions on Antennas and Propagation, 54(11), 3151–3166.

    Article  Google Scholar 

  17. Sheng, H., Haimovich, A. M., Molisch, A. F., & Zhang, J. (2003). Optimum combining for time hopping impulse radio uwb rake receivers. Ultra Wideband Systems and Technologies, 2003 IEEE Conference on (pp. 224-228). IEEE.

  18. Cassioli, D., Win, M. Z., Vatalaro, F., & Molisch, A. F. (2007). Low complexity rake receivers in ultra-wideband channels. IEEE Transactions on Wireless Communications, 6(4), 1265–1275.

    Article  Google Scholar 

  19. Win, M. Z., & Kostic, Z. A. (1999). Virtual path analysis of selective rake receiver in dense multipath channels. IEEE Communications Letters, 3(11), 308–310.

    Article  Google Scholar 

  20. Bai, Z., & Xu, Y. (2012). MGF based performance analysis of dual-hop regenerative relaying IR-UWB systems. AEU-International Journal of Electronics and Communications, 66(8), 641–646.

    Article  Google Scholar 

  21. Proakis, J. G., & Salehi, M. (2008). Digital Communication (5th ed.). New York: McGraw-Hill.

    MATH  Google Scholar 

  22. Eslami, M., & Dong, X. (2005). Rake-MMSE-equalizer performance for UWB. IEEE Communications Letters, 9(6), 502–504.

    Google Scholar 

  23. Ahmadian, Z., Shenouda, M. B., & Lampe, L. (2012). Design of pre-rake DS-UWB downlink with pre-equalization. IEEE Transactions on Communications, 60(2), 400–410.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Elassali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elassali, R., Hamidoun, K., Elhillali, Y. et al. Performance Evaluation of High Data Rate M-OAM UWB Physical Layer for Intelligent Transportation Systems. Wireless Pers Commun 94, 3265–3283 (2017). https://doi.org/10.1007/s11277-016-3776-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3776-9

Keywords

Navigation