Skip to main content
Log in

Applying Cubic Spline Method to Estimate the Number of RFID Tags in Error-Prone Communication Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Radio frequency identification systems aid in fast identification of tagged objects simultaneously, by means of radio signals. However, when radio frequency signals are emitted simultaneously, there is a probability of collision occurrence because of which the identification process may fail, and thereby resulting in a waste of resources. Therefore, several anti-collision algorithms have been proposed to reduce the probability of collision occurrence. In almost all the existing anti-collision algorithms, a prior knowledge of the number of tags has a significant effect on the efficiency of the algorithms. However, since the exact number of tags is unavailable, it is essential to develop an accurate tag estimation method to reduce the collision probability. In this paper, the authors present a novel tag estimation method, which estimates the number of tags by means of the captured number of idle slots, by applying the cubic spline technique. Besides presenting highly accurate estimation results, this method also demonstrates compatibility with error-prone communication channels. Cubic spline method estimates the number of tags accurately, with <1 % error rate. Based on the results, it is observed that more accurate estimation results from the proposed method provides greater channel efficiency and lowers the average identification time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Symonds, J., Ayoade, J., & Parry, D. (2009). Auto-Identification and ubiquitous computing applications. USA: Information Science Reference.

  2. Finkenzeller, K. (2010). RFID Handbook: Fundamentals and applications in contactless smart cards, radio frequency identification and near-field communication (3rd ed.). New York: Wiley Ltd.

    Book  Google Scholar 

  3. Shakiba, M., Zavvari, A., & Sundararajan, E. (2011). Fitted dynamic framed slotted ALOHA anti-collision algorithm in RFID systems. In International conference on information technology and multimedia (ICIM) (pp. 1–6). IEEE.

  4. Shih, D.-H., Sun, P.-L., Yen, D. C., & Huang, S.-M. (2006). Taxonomy and survey of RFID anti-collision protocols. Computer Communications, 29(11), 2150–2166.

    Article  Google Scholar 

  5. Alsalih, W., Ali, K., & Hassanein, H. (2013). A power control technique for anti-collision schemes in RFID systems. Computer Networks, 57(9), 1991–2003.

    Article  Google Scholar 

  6. Abramson, N. (1970). THE ALOHA SYSTEM: Another alternative for computer communications. In Proceedings of the November 1719, 1970, fall joint computer conference (pp. 281–285). ACM.

  7. Roberts, L. G. (1975). ALOHA packet system with and without slots and capture. ACM SIGCOMM Computer Communication Review, 5(2), 28–42.

    Article  Google Scholar 

  8. Deng, D.-J., & Tsao, H.-W. (2011). Optimal dynamic framed slotted ALOHA based anti-collision algorithm for RFID systems. Wireless Personal Communications, 59(1), 109–122.

    Article  Google Scholar 

  9. Shakiba, M., Singh, M. J., Sundararajan, E., Zavvari, A., & Islam, M. T. (2014). Extending birthday paradox theory to estimate the number of tags in RFID systems. PLoS One, 9(4), e95425.

    Article  Google Scholar 

  10. Joo, Y.-I., Seo, D.-H., & Kim, J.-W. (2013). An efficient anti-collision protocol for fast identification of RFID Tags. Wireless Personal Communications, 77(1), 767–775.

  11. Myung, J., Lee, W., Srivastava, J., & Shih, T. K. (2007). Tag-splitting: Adaptive collision arbitration protocols for RFID tag identification. IEEE Transactions on Parallel and Distributed Systems, 18(6), 763–775.

    Article  Google Scholar 

  12. Wu, H., Zeng, Y., Feng, J., & Gu, Y. (2013). Binary tree slotted ALOHA for passive RFID tag anticollision. IEEE Transactions on Parallel and Distributed Systems, 24(1), 19–31. doi:10.1109/TPDS.2012.120.

    Article  Google Scholar 

  13. Ahson, S. A., & Ilyas, M. (2010). RFID handbook: Applications, technology, security, and privacy. Boca Raton: CRC Press.

    Google Scholar 

  14. Wu, H., & Zeng, Y. (2010). Bayesian tag estimate and optimal frame length for anti-collision aloha RFID system. IEEE Transactions on Automation Science and Engineering, 7(4), 963–969.

    Article  Google Scholar 

  15. Cui, Y., & Zhao, Y. (2010). A fast zero estimation scheme for RFID systems. Computer Communications, 33(11), 1318–1324.

    Article  Google Scholar 

  16. Vales-Alonso, J., Bueno-Delgado, M. V., Egea-López, E., Alcaraz, J. J., & Pérez-Mañogil, J. M. (2011). On the optimal identification of tag sets in time-constrained RFID configurations. Sensors, 11(3), 2946–2960.

    Article  Google Scholar 

  17. Vogt, H. (2002). Efficient object identification with passive RFID tags. In F. Mattern & M. Naghshineh (Eds.), Pervasive computing (pp. 98–113). New York: Springer.

  18. Qian, C., Ngan, H., Liu, Y., & Ni, L. M. (2011). Cardinality estimation for large-scale RFID systems. IEEE Transactions on Parallel and Distributed Systems, 22(9), 1441–1454.

    Article  Google Scholar 

  19. Klair, D. K., Chin, K.-W., & Raad, R. (2010). A survey and tutorial of RFID anti-collision protocols. IEEE Communications Surveys and Tutorials, 12(3), 400–421.

    Article  Google Scholar 

  20. Schoute, F. C. (1983). Dynamic frame length ALOHA. IEEE Transactions on Communications, 31(4), 565–568.

    Article  Google Scholar 

  21. Bin, Z., Kobayashi, M., & Shimizu, M. (2005). Framed ALOHA for multiple RFID objects identification. IEICE Transactions on Communications, 88(3), 991–999.

    Google Scholar 

  22. Cha, J.-R., & Kim, J.-H. (2005) Novel anti-collision algorithms for fast object identification in RFID system. In Proceedings of 11th international conference on parallel and distributed systems (Vol. 2, pp. 63–67). IEEE.

  23. Eom, J.-B., & Lee, T.-J. (2010). Accurate tag estimation for dynamic framed-slotted ALOHA in RFID systems. IEEE Communications Letters, 14(1), 60–62.

    Article  Google Scholar 

  24. Vogt, H. (2002). Multiple object identification with passive RFID tags. In IEEE international conference on systems, man and cybernetics (Vol. 3, p. 6). IEEE.

  25. Chen, W.-T. (2009). An accurate tag estimate method for improving the performance of an RFID anticollision algorithm based on dynamic frame length ALOHA. IEEE Transactions on Automation Science and Engineering, 6(1), 9–15.

    Article  Google Scholar 

  26. Tong, Q., Zhang, Q., Min, R., & Zou, X. (2012). Bayesian estimation in dynamic framed slotted ALOHA algorithm for RFID system. Computers and Mathematics with Applications, 64(5), 1179–1186. doi:10.1016/j.camwa.2012.03.060.

    Article  Google Scholar 

  27. Rivest, R. L. (1987). Network control by Bayesian broadcast. IEEE Transactions on Information Theory, 33(3), 323–328.

    Article  MATH  MathSciNet  Google Scholar 

  28. Floerkemeier, C. (2007). Bayesian transmission strategy for framed ALOHA based RFID protocols. In IEEE international conference on RFID (pp. 228–235). IEEE.

  29. Khandelwal, G., Lee, K., Yener, A., & Serbetli, S. (2007). ASAP: A MAC protocol for dense and time-constrained RFID systems. EURASIP Journal on Wireless Communications and Networking, 2007(2), 3.

    Google Scholar 

  30. Kodialam, M., & Nandagopal, T. (2006). Fast and reliable estimation schemes in RFID systems. In Proceedings of the 12th annual international conference on mobile computing and networking (pp. 322–333). ACM.

  31. Park, J., & Lee, T.-J. (2012). Error resilient estimation and adaptive binary selection for fast and reliable identification of RFID tags in error-prone channel. IEEE Transactions on Mobile Computing, 11(6), 959–969.

    Article  Google Scholar 

  32. Shakiba, M., Sundararajan, E., Zavvari, A., & Islam, M. (2013). Cubic spline-based tag estimation method in RFID multi-tags identification process. Canadian Journal of Electrical and Computer Engineering, 36(1), 11–17.

    Article  Google Scholar 

  33. Motwani, R., & Raghavan, P. (2010). Randomized algorithms. London: Chapman & Hall.

    Google Scholar 

  34. ISO. (2013). Information technology—Radio frequency identification for item management. Part 6: Parameters for air interface communications at 860 MHz to 960 MHz General (Vol. ISO/IEC 18000-6:2013). ISO.

  35. EPCglobal. (2008). EPC™ Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz–960 MHz Version 1.2.0. (Vol. Version 1.2.0). EPCglobal.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Shakiba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakiba, M., Singh, M.J., Islam, M.T. et al. Applying Cubic Spline Method to Estimate the Number of RFID Tags in Error-Prone Communication Channels. Wireless Pers Commun 83, 361–382 (2015). https://doi.org/10.1007/s11277-015-2397-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2397-z

Keywords

Navigation