Skip to main content
Log in

Machine learning-based physical layer security: techniques, open challenges, and applications

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wireless physical layer security (WPLS) is a powerful technology for current and emerging mobile networks. Physical layer authentication (PLA), antenna selection (AS), and relay node selection are the main elements that add diversity and strength to the paradigm of WPLS. However, heterogeneity, ultra-density, and high mobility requirements make the work difficult for the security of wireless networks. Recently, machine learning has emerged as a promising tool to alleviate the increasing complexity of wireless networks. Hence, this paper introduces intelligent WPLS by concentration on PLA, AS, and relay node selection. First, it presents the background and types of WPLS and ML. Then, revisit the three basic methods of WPLS enhancement, i.e., relay node selection, AS, and authentication, and their integration with ML. Furthermore, several key challenges faced by intelligent WPLS were discussed along with the comprehensive investigation of its different applications in the wireless networks such as the internet of things, device-to-device communication, cognitive radio, non-orthogonal multiple access, and unmanned aerial vehicles. Finally, the appendix includes a detailed survey of ML techniques for WPLS. This article proposes to motivate and help interested readers to easily and rapidly understand the state-of-the-art of WPLS and intelligent WPLS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wu, Y., Khisti, A., Xiao, C., Caire, G., Wong, K. K., & Gao, X. (2018). A Survey of physical layer security techniques for 5G wireless networks and challenges ahead. IEEE Journal on Selected Areas in Communications, 36, 679–695. https://doi.org/10.1109/JSAC.2018.2825560

    Article  Google Scholar 

  2. Dhanda SS, Singh B, Jindal P. Lightweight Cryptography: A Solution to Secure IoT. Springer US; 2020. doi: https://doi.org/10.1007/s11277-020-07134-3.

  3. Wang, N., Wang, P., Alipour-Fanid, A., Jiao, L., & Zeng, K. (2019). Physical layer security of 5G wireless networks for IoT: Challenges and opportunities. IEEE Internet of Things Journal, 6, 1–1. https://doi.org/10.1109/jiot.2019.2927379

    Article  Google Scholar 

  4. Zhang, J., Duong, T. Q., Marshall, A., & Woods, R. (2016). Key generation from wireless channels: A review. IEEE Access, 4, 614–626. https://doi.org/10.1109/ACCESS.2016.2521718

    Article  Google Scholar 

  5. Hamamreh, J. M., Furqan, H. M., & Arslan, H. (2019). Classifications and applications of physical layer security techniques for confidentiality: A comprehensive survey. IEEE Communications Surveys and Tutorials, 21, 1773–1828. https://doi.org/10.1109/COMST.2018.2878035

    Article  Google Scholar 

  6. Jameel, F., Wyne, S., Kaddoum, G., & Duong, T. Q. (2018). A Comprehensive survey on cooperative relaying and jamming strategies for physical layer security. IEEE Communications Surveys and Tutorials, 21, 2734–2771. https://doi.org/10.1109/COMST.2018.2865607

    Article  Google Scholar 

  7. Wang, D., Bai, B., Zhao, W., & Han, Z. (2019). A survey of optimization approaches for wireless physical layer security. IEEE Communications Surveys and Tutorials, 21, 1878–1911. https://doi.org/10.1109/COMST.2018.2883144

    Article  Google Scholar 

  8. Zou, Y., Zhu, J., Wang, X., & Hanzo, L. (2016). A survey on wireless security: Technical challenges, recent advances, and future trends. Proceedings of the IEEE, 104, 1727–1765. https://doi.org/10.1109/JPROC.2016.2558521

    Article  Google Scholar 

  9. Trappe, W. (2015). The challenges facing physical layer security. IEEE Communications Magazine, 53, 16–20. https://doi.org/10.1109/MCOM.2015.7120011

    Article  Google Scholar 

  10. Mukherjee, A., Fakoorian, S. A. A., Huang, J., & Swindlehurst, A. L. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys and Tutorials, 16, 1550–1573. https://doi.org/10.1109/SURV.2014.012314.00178

    Article  Google Scholar 

  11. Shannon, C. E. (1949). Communication theory of secrecy systems. The Bell System Technical Journal, 28(4), 656–715. https://doi.org/10.1002/j.1538-7305.1949.tb00928.x

    Article  MathSciNet  MATH  Google Scholar 

  12. Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal., 54(8), 1355–1387. https://doi.org/10.1002/j.1538-7305.1975.tb02040.x

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhou, X., Song, L., & Zhang, Y. (2013). Physical layer security in wireless communications. CRC Press.

    Google Scholar 

  14. Duong TQ et.al. Trusted Communications with Physical Layer Security for 5G and Beyond.IET;2017

  15. Hassan, E. S., & Hassan, E. S. (2019). Physical layer security in wireless. Networks. https://doi.org/10.1201/9781315106106-3

    Article  Google Scholar 

  16. Mukherjee, A., Fakoorian, S. A., Huang, J., Swindlehurst, L., Zhou, X., Song, L., & Zhang, Y. (2013). MIMO signal processing algorithms for enhanced physical layer security. Physical Layer Security in Wireless Communications, 56, 93–114.

    Google Scholar 

  17. Morocho-Cayamcela, M. E., Lee, H., & Lim, W. (2019). Machine learning for 5G/B5G mobile and wireless communications: Potential, limitations, and future directions. IEEE Access, 7, 137184–137206. https://doi.org/10.1109/ACCESS.2019.2942390

    Article  Google Scholar 

  18. Gunduz, D., de Kerret, P., Sidiropoulos, N. D., Gesbert, D., Murthy, C. R., & van der Schaar, M. (2019). Machine learning in the air. IEEE Journal on Selected Areas in Communications, 37, 2184–2199. https://doi.org/10.1109/jsac.2019.2933969

    Article  Google Scholar 

  19. Simeone, O. (2018). A very brief introduction to machine learning with applications to communication systems. IEEE Transactions on Cognitive Communications and Networking, 4, 648–664. https://doi.org/10.1109/TCCN.2018.2881442

    Article  Google Scholar 

  20. Jang, B., Kim, M., Harerimana, G., & Kim, J. W. (2019). Q-learning algorithms: A comprehensive classification and applications. IEEE Access, 7, 133653–133667. https://doi.org/10.1109/ACCESS.2019.2941229

    Article  Google Scholar 

  21. Li, G., Gomez, R., Nakamura, K., & He, B. (2019). Human-centered reinforcement learning: A survey. IEEE Transactions on Human-Machine Systems, 49, 337–349. https://doi.org/10.1109/THMS.2019.2912447

    Article  Google Scholar 

  22. O’Shea, T., & Hoydis, J. (2017). An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications and Networking, 3, 563–575. https://doi.org/10.1109/TCCN.2017.2758370

    Article  Google Scholar 

  23. Yang, C., He, Z., Peng, Y., Wang, Y., & Yang, J. (2019). Deep learning aided method for automatic modulation recognition. IEEE Access, 7, 109063–109068. https://doi.org/10.1109/access.2019.2933448

    Article  Google Scholar 

  24. Hoang, T. M., Duong, T. Q., Tuan, H. D., Lambotharan, S., & Hanzo, L. (2021). Physical layer security: Detection of active eavesdropping attacks by support vector machines. IEEE Access, 9, 31595–31607. https://doi.org/10.1109/ACCESS.2021.3059648

    Article  Google Scholar 

  25. Germain KS, Kragh F. Physical-Layer Authentication Using Channel State Information and Machine Learning. arXiv preprint https://arxiv.org/abs/2006.03695. 2020 Jun 5.

  26. Qiu, X., Dai, J., & Hayes, M. (2020). A learning approach for physical layer authentication using adaptive neural network. IEEE Access., 8, 26139–36149. https://doi.org/10.1109/ACCESS.2020.2971260

    Article  Google Scholar 

  27. Zhang, T., Wen, H., Tang, J., Song, H., & Xie, F. (2020). Cooperative jamming secure scheme for iwns random mobile users aided by edge computing intelligent node selection. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/TII.2020.3017767

    Article  Google Scholar 

  28. Wang, X., & Liu, F. (2020). Data-driven relay selection for physical-layer security: A decision tree approach. IEEE Access, 8, 12105–12116. https://doi.org/10.1109/ACCESS.2020.2965963

    Article  Google Scholar 

  29. Kamboj, A. K., Jindal, P., & Verma, P. (2021). Intelligent physical layer secure relay selection for wireless cooperative networks with multiple eavesdroppers. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08458-4

    Article  Google Scholar 

  30. He, D., Liu, C., Quek, T. Q. S., & Wang, H. (2018). Transmit antenna selection in MIMO wiretap channels: A machine learning approach. IEEE Wireless Communications Letters, 7, 634–637. https://doi.org/10.1109/LWC.2018.2805902

    Article  Google Scholar 

  31. Yao, R., Zhang, Y., Wang, S., Qi, N., Miridakis, N. I., & Tsiftsis, T. A. (2019). Deep neural network assisted approach for antenna selection in untrusted relay networks. IEEE Wireless Communications Letters, 8, 1644–1647. https://doi.org/10.1109/LWC.2019.2933392

    Article  Google Scholar 

  32. Xiao, L., Greenstein, L. J., Mandayam, N. B., & Trappe, W. (2009). Channel-based detection of sybil attacks in wireless networks. IEEE Transactions on Information Forensics and Security, 4, 492–503. https://doi.org/10.1109/TIFS.2009.2026454

    Article  Google Scholar 

  33. Tugnait, J. K. (2013). Wireless user authentication via comparison of power spectral densities. IEEE Journal on Selected Areas in Communications, 31, 1791–1802. https://doi.org/10.1109/JSAC.2013.130912

    Article  Google Scholar 

  34. Hou, W., Wang, X., Chouinard, J. Y., & Refaey, A. (2014). Physical layer authentication for mobile systems with time-varying carrier frequency offsets. IEEE Transactions on Communications, 62, 1658–1667. https://doi.org/10.1109/TCOMM.2014.032914.120921

    Article  Google Scholar 

  35. Ramabadran, P., Afanasyev, P., Malone, D., Leeser, M., McCarthy, D., O’Brien, B., et al. (2020). A novel physical layer authentication with PAPR reduction based on channel and hardware frequency responses. IEEE Transactions on Circuits and Systems I: Regular Papers, 67, 526–539. https://doi.org/10.1109/TCSI.2019.2952936

    Article  Google Scholar 

  36. Bao, V. N. Q., Linh-Trung, N., & Debbah, M. (2013). Relay selection schemes for dual-hop networks under security constraints with multiple eavesdroppers. IEEE Transactions on Wireless Communications, 12, 6076–6085. https://doi.org/10.1109/TWC.2013.110813.121671

    Article  Google Scholar 

  37. Zhang, P., Taleb, T., Jiang, X., & Wu, B. (2020). Physical layer authentication for massive MIMO systems with hardware impairments. IEEE Transactions on Wireless Communications, 19, 1563–1576. https://doi.org/10.1109/TWC.2019.2955128

    Article  Google Scholar 

  38. Vazquez-Castro, A., & Hayashi, M. (2019). Physical layer security for RF satellite channels in the finite-length regime. IEEE Transactions on Information Forensics and Security, 14, 981–993. https://doi.org/10.1109/TIFS.2018.2868538

    Article  Google Scholar 

  39. Yu, P. L., Baras, J. S., & Sadler, B. M. (2008). Physical-layer authentication. IEEE Transactions on Information Forensics and Security, 3, 38–51. https://doi.org/10.1109/TIFS.2007.916273

    Article  Google Scholar 

  40. Chen, G., & Coon, J. P. (2017). Secrecy outage analysis in random wireless networks with antenna selection and user ordering. IEEE Wireless Communications Letters, 6, 334–337. https://doi.org/10.1109/LWC.2017.2689024

    Article  Google Scholar 

  41. Chen, G., Dwyer, V., Krikidis, I., Thompson, J. S., McLaughlin, S., & Chambers, J. (2012). Comment on “relay selection for secure cooperative networks with Jamming.” IEEE Transactions on Wireless Communications, 11, 2351. https://doi.org/10.1109/TWC.2012.12.112208

    Article  Google Scholar 

  42. Wang, L., Cai, Y., Zou, Y., Yang, W., & Hanzo, L. (2016). Joint relay and jammer selection improves the physical layer security in the face of CSI feedback delays. IEEE Transactions on Vehicular Technology, 65, 6259–6274. https://doi.org/10.1109/TVT.2015.2478029

    Article  Google Scholar 

  43. Jindal, A., & Bose, R. (2015). Resource allocation for secure multicarrier AF relay system under total power constraint. IEEE Communications Letters, 19, 231–234. https://doi.org/10.1109/LCOMM.2014.2379652

    Article  Google Scholar 

  44. Xu, Q., Ren, P., Du, Q., & Sun, L. (2018). Security-aware waveform and artificial noise design for time-reversal-based transmission. IEEE Transactions on Vehicular Technology, 67, 5486–5490. https://doi.org/10.1109/TVT.2018.2813318

    Article  Google Scholar 

  45. Jiang, X. Q., Wen, M., Hai, H., Li, J., & Kim, S. (2018). Secrecy-enhancing scheme for spatial modulation. IEEE Communications Letters, 22, 550–553. https://doi.org/10.1109/LCOMM.2017.2783955

    Article  Google Scholar 

  46. Basar, E., Wen, M., Mesleh, R., Di Renzo, M., Xiao, Y., & Haas, H. (2017). Index modulation techniques for next-generation wireless networks. IEEE Access, 5, 16693–16746. https://doi.org/10.1109/ACCESS.2017.2737528

    Article  Google Scholar 

  47. Besser, K.-L., Lin, P.-H., Janda, C. R., & Jorswieck, E. A. (2019). Wiretap code design by neural network autoencoders. IEEE Transactions on Information Forensics and Security, 6013, 1–1. https://doi.org/10.1109/tifs.2019.2945619

    Article  Google Scholar 

  48. Pahuja, S., & Jindal, P. (2019). Cooperative communication in physical layer security: Technologies and challenges. Wireless Personal Communications, 108, 811–837. https://doi.org/10.1007/s11277-019-06430-x

    Article  Google Scholar 

  49. Chauhan, S. S., Verma, P., Mathur, M., Agarwal, M., & Gupta, T. (2016). Physical layer security of MIMO STBC over Rayleigh fading channels in the presence of channel estimation error. Optik, 127, 7625–7630. https://doi.org/10.1016/j.ijleo.2016.05.086

    Article  Google Scholar 

  50. Pal, S., & Jindal, P. (2019). Secrecy performance analysis of hybrid AF - DF relaying under multi hop environment. Wireless Personal Communications. https://doi.org/10.1007/s11277-019-06954-2

    Article  Google Scholar 

  51. Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal on Research and Development, 3(3), 210–229. https://doi.org/10.1147/rd.33.0210

    Article  MathSciNet  Google Scholar 

  52. Mitchell, T. M. (1997). Does machine learning really work ? AI Management., 18, 71–83. https://doi.org/10.1609/aimag.v18i3.1303

    Article  Google Scholar 

  53. Bishop CM. Pattern Recognition and Machine Learning. Springer, 2006. https://www.springer.com/gp/book/9780387310732.

  54. Alpaydin E, Introduction to machine learning. MIT press, 2014. https://mitpress.mit.edu/books/introduction-machine-learning-third-edition.

  55. Van Engelen, J. E., & Hoos, H. H. (2020). A survey on semi-supervised learning. Machine Learning, 109(2), 373–440. https://doi.org/10.1007/s10994-019-05855-6

    Article  MathSciNet  MATH  Google Scholar 

  56. Usama, M., Qadir, J., Raza, A., Arif, H., Yau, K. L. A., Elkhatib, Y., Hussain, A., & Al-Fuqaha, A. (2019). Unsupervised machine learning for networking: Techniques, applications and research challenges. IEEE Access, 7, 65579–65615. https://doi.org/10.1109/ACCESS.2019.2916648

    Article  Google Scholar 

  57. Qin, Z., Ye, H., Li, G. Y., & Juang, B. H. F. (2019). Deep learning in physical layer communications. IEEE Wireless Communications, 26, 93–99. https://doi.org/10.1109/MWC.2019.1800601

    Article  Google Scholar 

  58. Zhang, C., Patras, P., & Haddadi, H. (2019). Deep learning in mobile and wireless networking: A survey. IEEE Communications Surveys & Tutorials, 21, 2224–2287. https://doi.org/10.1109/comst.2019.2904897

    Article  Google Scholar 

  59. Wu, Q., Feres, C., Kuzmenko, D., Zhi, D., Yu, Z., Liu, X., et al. (2018). Deep learning based RF fingerprinting for device identification and wireless security. Electronics Letters, 54, 1405–1407. https://doi.org/10.1049/el.2018.6404

    Article  Google Scholar 

  60. Wang, X. (2019). Decision-tree-based relay selection in Dualhop wireless communications. IEEE Transaction on Vehicular Communication., 68, 6212–6216. https://doi.org/10.1109/TVT.2019.2909302

    Article  Google Scholar 

  61. Joung, J. (2016). Machine learning-based antenna selection in wireless communications. IEEE Communications Letters, 20, 2241–2244. https://doi.org/10.1109/LCOMM.2016.2594776

    Article  Google Scholar 

  62. Li, W., & Huang, J. (2018). Mobile physical layer spoofing detection based on sparse representation. IET Communications, 12, 1709–1713. https://doi.org/10.1049/iet-com.2017.0829

    Article  Google Scholar 

  63. Youssef, K., Bouchard, L., Haigh, K., Silovsky, J., Thapa, B., & Vander, Valk C. (2018). Machine learning approach to RF transmitter identification. IEEE Journal of Radio Frequency Identification, 2, 197–205. https://doi.org/10.1109/jrfid.2018.2880457

    Article  Google Scholar 

  64. Wang, Q., Li, H., Zhao, D., Chen, Z., Ye, S., & Cai, J. (2019). Deep neural networks for CSI-based authentication. IEEE Access, 7, 123026–123034. https://doi.org/10.1109/access.2019.2938533

    Article  Google Scholar 

  65. Xiao, L., Li, Y., Han, G., Liu, G., & Zhuang, W. (2016). PHY-layer spoofing detection with reinforcement learning in wireless networks. IEEE Transactions on Vehicular Technology, 65, 10037–10047. https://doi.org/10.1109/TVT.2016.2524258

    Article  Google Scholar 

  66. Wang, N., Jiang, T., Lv, S., & Xiao, L. (2017). Physical-layer authentication based on extreme learning machine. IEEE Communications Letters, 21, 1557–1560. https://doi.org/10.1109/LCOMM.2017.2690437

    Article  Google Scholar 

  67. Qiu, X., Jiang, T., Wu, S., & Hayes, M. (2018). Physical layer authentication enhancement using a gaussian mixture model. IEEE Access, 6, 53583–53592. https://doi.org/10.1109/ACCESS.2018.2871514

    Article  Google Scholar 

  68. Fang, H., Wang, X., & Hanzo, L. (2019). Learning-aided physical layer authentication as an intelligent process. IEEE Transactions on Communications, 67, 2260–2273. https://doi.org/10.1109/TCOMM.2018.2881117

    Article  Google Scholar 

  69. Xu, Y., Xia, J., Wu, H., & Fan, L. (2020). Q-learning based physical-layer secure game against multiagent attacks. IEEE Access, 7, 49212–49222. https://doi.org/10.1109/ACCESS.2019.2910272

    Article  Google Scholar 

  70. Hoang, T. M., Nguyen, N. M., & Duong, T. Q. (2020). Detection of eavesdropping attack in UAV-aided wireless systems: unsupervised learning with one-class SVM and K-means clustering. IEEE Wireless Communications Letters, 9, 139–142. https://doi.org/10.1109/LWC.2019.2945022

    Article  Google Scholar 

  71. Sankhe, K., Belgiovine, M., Zhou, F., Angioloni, L., Restuccia, F., D’Oro, S., et al. (2020). No radio left behind: Radio fingerprinting through deep learning of physical-layer hardware impairments. IEEE Transactions on Cognitive Communications and Networking, 6, 165–178. https://doi.org/10.1109/TCCN.2019.2949308

    Article  Google Scholar 

  72. Peng, L., Zhang, J., Liu, M., & Hu, A. (2020). Deep learning based rf fingerprint identification using differential constellation trace figure. IEEE Transactions on Vehicular Technology., 69, 1091–1095. https://doi.org/10.1109/TVT.2019.2950670

    Article  Google Scholar 

  73. Zhang, Z., Guo, X., & Lin, Y. (2018). Trust management method of D2D Communication Based on RF fingerprint identification. IEEE Access, 6, 66082–66087. https://doi.org/10.1109/ACCESS.2018.2878595

    Article  Google Scholar 

  74. Liao, R.-F., Wen, H., Wu, J., Pan, F., Xu, A., Song, H., et al. (2019). Security enhancement for mobile edge computing through physical layer authentication. IEEE Access, 7, 116390–116401. https://doi.org/10.1109/access.2019.2934122

    Article  Google Scholar 

  75. Liao, R. F., Wen, H., Chen, S., Xie, F., Pan, F., Tang, J., et al. (2020). Multiuser physical layer authentication in internet of things with data augmentation. IEEE Internet of Things Journal, 7, 2077–2088. https://doi.org/10.1109/JIOT.2019.2960099

    Article  Google Scholar 

  76. Sa, K., Lang, D., Wang, C., & Bai, Y. (2020). Specific emitter identification techniques for the internet of things. IEEE Access, 8, 1644–1652. https://doi.org/10.1109/ACCESS.2019.2962626

    Article  Google Scholar 

  77. An, W., Zhang, P., Xu, J., Luo, H., Huang, L., & Zhong, S. (2020). A novel machine learning aided antenna selection scheme for MIMO Internet of Things. Sensors., 20(8), 2250. https://doi.org/10.3390/s20082250

    Article  Google Scholar 

  78. Hui, H., Swindlehurst, A. L., Li, G., & Liang, J. (2015). Secure relay and jammer selection for physical layer security. IEEE Signal Processing Letters, 22, 1147–1151. https://doi.org/10.1109/LSP.2014.2387860

    Article  Google Scholar 

  79. Deng, H., Wang, H. M., Guo, W., & Wang, W. (2015). Secrecy transmission with a Helper: To relay or to Jam. IEEE Transactions on Information Forensics and Security, 10, 293–307. https://doi.org/10.1109/TIFS.2014.2374356

    Article  Google Scholar 

  80. Kamboj, A. K., Jindal, P., & Verma, P. (2021). Physical layer security-based relay selection for wireless cooperative networks: A reinforcement learning approach. In B. Singh, C. A. Coello Coello, P. Jindal, & P. Verma (Eds.), Intelligent computing and communication systems algorithms for intelligent systems. Singapore: Springer.

    Google Scholar 

  81. Al-Qahtani, F. S., Zhong, C., & Alnuweiri, H. M. (2015). Opportunistic relay selection for secrecy enhancement in cooperative networks. IEEE Transactions on Communications, 63, 1756–1770. https://doi.org/10.1109/TCOMM.2015.2412939

    Article  Google Scholar 

  82. Lei, X., Fan, L., Hu, R. Q., Michalopoulos, D. S., & Fan, P. (2014). Secure multiuser communications in multiple decode-and-forward relay networks. IEEE Transactions on Communication, 62, 3180–3185. https://doi.org/10.1109/GLOCOM.2014.7037295

    Article  Google Scholar 

  83. Tran, T. T., & Kong, H. Y. (2014). CSI-Secured orthogonal jamming method for wireless physical layer security. IEEE Communications Letters, 18, 841–844. https://doi.org/10.1109/LCOMM.2014.040214.140109

    Article  Google Scholar 

  84. Zou, Y., Wang, X., & Shen, W. (2013). Optimal relay selection for physical-layer security in cooperative wireless networks. IEEE Journal on Selected Areas in Communications, 31, 2099–2111. https://doi.org/10.1109/JSAC.2013.131011

    Article  Google Scholar 

  85. Nguyen, N. P., Duong, T. Q., Ngo, H. Q., Hadzi-Velkov, Z., & Shu, L. (2016). Secure 5G wireless communications: A joint relay selection and wireless power transfer approach. IEEE Access, 4, 3349–3359. https://doi.org/10.1109/ACCESS.2016.2582719

    Article  Google Scholar 

  86. Zhang, N., Cheng, N., Lu, N., Zhang, X., Mark, J. W., & Shen, X. (2015). Partner selection and incentive mechanism for physical layer security. IEEE Transactions on Wireless Communications, 14, 4265–4276. https://doi.org/10.1109/TWC.2015.2418316

    Article  Google Scholar 

  87. Yang, L., Chen, J., Jiang, H., Vorobyov, S. A., & Zhang, H. (2017). Optimal relay selection for secure cooperative communications with an adaptive eavesdropper. IEEE Transactions on Wireless Communications, 16, 26–42. https://doi.org/10.1109/TWC.2016.2617328

    Article  Google Scholar 

  88. Khandaker, M. R. A., Wong, K. K., & Zheng, G. (2017). Truth-Telling mechanism for two-way relay selection for secrecy communications with energy-harvesting revenue. IEEE Transactions on Wireless Communications, 16, 3111–3123. https://doi.org/10.1109/TWC.2017.2675402

    Article  Google Scholar 

  89. Jia, S., Zhang, J., Zhao, H., Lou, Y., & Xu, Y. (2018). Relay selection for improved physical layer security in cognitive relay networks using artificial noise. IEEE Access, 6, 64836–64846. https://doi.org/10.1109/ACCESS.2018.2878058

    Article  Google Scholar 

  90. Chen, J., Song, L., Han, Z., & Jiao, B. (2012). Joint relay and jammer selection for secure two-way relay network. IEEE Transactions on Information Forensics And Security, 7, 310–320. https://doi.org/10.1109/GLOCOM.2011.6133875

    Article  Google Scholar 

  91. Dong, L., Han, Z., Petropulu, A. P., & Poor, H. V. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58, 1875–1888. https://doi.org/10.1109/TSP.2009.2038412

    Article  MathSciNet  MATH  Google Scholar 

  92. Jadoon, M. A., & Kim, S. (2017). Relay selection algorithm for wireless cooperative networks: A learning-based approach. IET Communications, 11, 1061–1066. https://doi.org/10.1049/iet-com.2016.1046

    Article  Google Scholar 

  93. Su, Y., Lu, X., Zhao, Y., Huang, L., & Du, X. (2019). Cooperative communications with relay selection based on deep reinforcement learning in wireless sensor networks. IEEE Sensors Journal, 19, 9561–9569. https://doi.org/10.1109/JSEN.2019.2925719

    Article  Google Scholar 

  94. Tian, D., Zhou, J., Sheng, Z., Chen, M., Ni, Q., & Leung, V. C. M. (2017). Self-organized relay selection for cooperative transmission in vehicular Ad-Hoc networks. IEEE Transactions on Vehicular Technology, 66, 9534–9549. https://doi.org/10.1109/TVT.2017.2715328

    Article  Google Scholar 

  95. Nguyen, T.-T., Lee, J.-H., Nguyen, M.-T., & Kim, Y.-H. (2019). Machine learning-based relay selection for secure transmission in multi-hop DF relay networks. Electronics, 8, 949. https://doi.org/10.3390/electronics8090949

    Article  Google Scholar 

  96. Yang, N., Yeoh, P. L., Elkashlan, M., Schober, R., & Yuan, J. (2013). MIMO wiretap channels: Secure transmission using transmit antenna selection and receive generalized selection combining. IEEE Communications Letters, 17, 1754–1757. https://doi.org/10.1109/LCOMM.2013.071813.131048

    Article  Google Scholar 

  97. Ding, Z., Ma, Z., & Fan, P. (2014). Asymptotic studies for the impact of antenna selection on secure two-way relaying communications with artificial noise. IEEE Transactions on Wireless Communications, 13, 2189–2203. https://doi.org/10.1109/TWC.2014.022714131252

    Article  Google Scholar 

  98. Yang, M., Guo, D., Huang, Y., Duong, T. Q., & Zhang, B. (2016). Physical layer security with threshold-based multiuser scheduling in multi-antenna wireless networks. IEEE Transactions on Communications, 64, 5189–5202. https://doi.org/10.1109/TCOMM.2016.2606396

    Article  Google Scholar 

  99. Chen, J., Chen, S., Qi, Y., & Fu, S. (2019). Intelligent massive MIMO antenna selection using monte carlo tree search. IEEE Transactions on Signal Processing, 67, 5380–5390. https://doi.org/10.1109/TSP.2019.2940128

    Article  MATH  Google Scholar 

  100. Yang, X., & Zhao, F. (2020). Multi-class import vector machine for transmit antenna selection in MIMO systems. Electronics Letters, 56, 62–65. https://doi.org/10.1049/el.2019.3233

    Article  Google Scholar 

  101. Gecgel, S., Goztepe, C., Kurt, G. K., & Member, S. (2020). Transmit antenna selection for large-scale MIMO. IEEE Wireless Communications Letters, 9, 113–116. https://doi.org/10.1109/LWC.2019.2944179

    Article  Google Scholar 

  102. Sim, M. S., Lim, Y.-G., Park, S. H., Dai, L., & Chae, C.-B. (2020). Deep learning-based mmWave beam selection for 5G NR/6G with sub-6 ghz channel information: Algorithms and prototype validation. IEEE Access, 8, 51634–51646. https://doi.org/10.1109/access.2020.2980285

    Article  Google Scholar 

  103. Chai X, Gao H, Sun J, Su X, Lv T, Zeng J. Reinforcement Learning Based Antenna Selection in User-Centric Massive MIMO. In2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring) 2020 May 25 (pp. 1–6). IEEE. https://https://doi.org/10.1109/VTC2020-Spring48590.2020.9129108.

  104. Guo, M., & Gursoy, M. C. (2020). Statistical learning based joint antenna selection and user scheduling for single-cell massive MIMO systems. IEEE Transactions on Green Communications and Networking. https://doi.org/10.1109/TGCN.2020.3033967

    Article  Google Scholar 

  105. Elbir, A. M., Mishra, K. V., & Eldar, Y. C. (2019). Cognitive radar antenna selection via deep learning. IET Radar, Sonar and Navigation, 13, 871–880. https://doi.org/10.1049/iet-rsn.2018.5438

    Article  Google Scholar 

  106. Wang Y, Klautau A, Ribero M, Narasimha M, Heath RW. MmWave Vehicular Beam Training with Situational Awareness by Machine Learning. IEEE Globecom 2018.

  107. Simmons, G. J. (1988). A survey of information authentication. Proceedings of the IEEE, 76, 603–620. https://doi.org/10.1109/5.4445.

    Article  Google Scholar 

  108. Stallings, W. (2010). Cryptography and network security: Principles and Practice (5th ed.). Prentice Hall.

    Google Scholar 

  109. Zeng, K. (2010). Non-cryptographic authentication and identification in wireless networks. IEEE Wireless Communications. https://doi.org/10.1109/MWC.2010.5601959

    Article  Google Scholar 

  110. Jakes, W. C., & Cox, D. C. (1994). Microwave mobile communications. Wiley-IEEE Press.

    Book  Google Scholar 

  111. Wen, H., Ho, P. H., Qi, C., & Gong, G. (2010). Physical layer assisted authentication for distributed ad hoc wireless sensor networks. IET Information Security, 4, 390–396. https://doi.org/10.1049/iet-ifs.2009.0197

    Article  Google Scholar 

  112. Challita, U., Ferdowsi, A., Chen, M., & Saad, W. (2019). Machine learning for wireless connectivity and security of cellular-connected UAV’s. IEEE Wireless Communications, 26, 28–35. https://doi.org/10.1109/MWC.2018.1800155

    Article  Google Scholar 

  113. Liao, R. F., Wen, H., Wu, J., Pan, F., Xu, A., Jiang, Y., et al. (2019). Deep-learning-based physical layer authentication for industrial wireless sensor networks. Sensors (Basel, Switzerland), 19, 1–17. https://doi.org/10.3390/s19112440

    Article  Google Scholar 

  114. Zheng, G., Hua, C., Zheng, R., & Wang, Q. (2016). toward robust relay placement in 60 GHz mmWave wireless personal area networks with directional antenna. IEEE Transactions on Mobile Computing, 15, 762–773. https://doi.org/10.1109/TMC.2015.2425409

    Article  Google Scholar 

  115. Ahmad, W. S. H. M. W., Radzi, N. A. M., Samidi, F. S., Ismail, A., Abdullah, F., Jamaludin, M. Z., et al. (2020). 5G technology: Towards DYNAMIC SPECTRUM SHARING USING COGNITIVE RADIO NETWORKs. IEEE Access, 8, 14460–88. https://doi.org/10.1109/ACCESS.2020.2966271

    Article  Google Scholar 

  116. Verma, P., & Singh, B. (2016). Throughput maximization by alternative use of single and double thresholds based energy detection method. Optik, 127, 1635–1638. https://doi.org/10.1016/j.ijleo.2015.11.072

    Article  Google Scholar 

  117. Verma, P. (2020). Adaptive threshold based energy detection over rayleigh fading channel. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07189-2

    Article  Google Scholar 

  118. Sakran, H., Shokair, M., Nasr, O., El-Rabaie, S., & El-Azm, A. A. (2012). Proposed relay selection scheme for physical layer security in cognitive radio networks. IET Communications, 6, 2676–2687. https://doi.org/10.1049/iet-com.2011.0638

    Article  MathSciNet  Google Scholar 

  119. Zou Y, Member S, Champagne B, Member S, Zhu W. Relay-Selection Improves the Security-Reliability Trade-off in Cognitive Radio Systems n. IEEE Transaction on Communications 2015. . https://https://doi.org/10.1109/TCOMM.2014.2377239.

  120. Liu, Y., Wang, L., Duy, T. T., Elkashlan, M., & Duong, T. Q. (2015). Relay selection for security enhancement in cognitive relay networks. IEEE Wireless Communication. Letter, 4, 46–49. https://doi.org/10.1109/LWC.2014.2365808

    Article  Google Scholar 

  121. Yan P, Zou Y, Zhu J. Transmit antenna selection to improve physical layer security for MIMO-CR systems. 2016 8th International Conference on Wireless Communications and Signal Processing, WCSP 2016 2016:1–4. doi: https://doi.org/10.1109/WCSP.2016.7752737.

  122. Lei, H., Xu, M., Ansari, I. S., Pan, G., Qaraqe, K. A., & Alouini, M. (2017). On secure underlay MIMO cognitive radio networks with energy harvesting and transmit antenna selection. IEEE Transaction on Green Communication Networks, 1, 192–203. https://doi.org/10.1109/TGCN.2017.2684827

    Article  Google Scholar 

  123. Chen, D., Cheng, Y., Yang, W., Hu, J., Member, S., Cai, Y., et al. (2018). Physical layer security in cognitive untrusted relay networks. IEEE Access, 6, 7055–7065. https://doi.org/10.1109/ACCESS.2017.2762738

    Article  Google Scholar 

  124. Yang, Q., Laurenson, D. I., & Barria, J. A. (2012). On the use of LEO satellite constellation for active network management in power distribution. Networks, 3, 1371–1381. https://doi.org/10.1109/TSG.2012.2197644

    Article  Google Scholar 

  125. Liu, J., Wang, J., Liu, W., Wang, Q., & Wang, M. (2018). A novel cooperative physical layer security scheme for satellite downlinks. Chinese Journal of Electronics, 27, 860–865. https://doi.org/10.1049/cje.2018.05.016

    Article  Google Scholar 

  126. An, K., Lin, M., Ouyang, J., & Zhu, W. (2016). Secure transmission in cognitive satellite terrestrial networks. IEEE Journal on Selected Areas in Communication, 34, 3025–3037. https://doi.org/10.1109/JSAC.2016.2615261

    Article  Google Scholar 

  127. Boero, L., Bruschi, R., Davoli, F., Marchese, M., & Patrone, F. (2018). Satellite networking integration in the 5g ecosystem: Research trends and open challenges. IEEE Network, 32, 9–15. https://doi.org/10.1109/MNET.2018.1800052

    Article  Google Scholar 

  128. Lin, M., Lin, Z., Zhu, W., Member, S., & Wang, J. (2018). Joint beamforming for secure communication in cognitive satellite terrestrial networks. IEEE Journal on Selected Areas in Communication, 36, 1017–29. https://doi.org/10.1109/JSAC.2018.2832819

    Article  Google Scholar 

  129. Bankey, V., & Upadhyay, P. K. (2019). Physical layer security of multiuser multirelay hybrid satellite-terrestrial relay networks. IEEE Transactions on Vehicular Technology, 68, 2488–2501. https://doi.org/10.1109/TVT.2019.2893366

    Article  Google Scholar 

  130. Guo, K., An, K., Zhang, B., Huang, Y., & Guo, D. (2018). Physical layer security for hybrid satellite terrestrial relay networks with joint relay selection and user scheduling. IEEE Access, 6, 55815–55827. https://doi.org/10.1109/ACCESS.2018.2872718

    Article  Google Scholar 

  131. Huang, Q., Lin, M., An, K., Ouyang, J., & Zhu, W. P. (2018). Secrecy performance of hybrid satellite-terrestrial relay networks in the presence of multiple eavesdroppers. IET Communications, 12, 26–34. https://doi.org/10.1049/iet-com.2017.0948

    Article  Google Scholar 

  132. Cao, W., Zou, Y., Yang, Z., & Zhu, J. (2018). Relay selection for improving physical-layer security in hybrid satellite-terrestrial relay networks. IEEE Access, 6, 65275–65285. https://doi.org/10.1109/ACCESS.2018.2877709

    Article  Google Scholar 

  133. Li, J., Han, S., Tai, X., Gao, C., & Zhang, Q. (2020). Physical layer security enhancement for satellite communication among similar channels: Relay selection and power allocation. IEEE Systems Journal, 14, 433–444. https://doi.org/10.1109/JSYST.2019.2921306

    Article  Google Scholar 

  134. Zeng, W., Zhang, J., Ng, D. W. K., Ai, B., & Zhong, Z. (2019). Two-way hybrid terrestrial-satellite relaying systems: Performance analysis and relay selection. IEEE Transactions on Vehicular Technology, 68, 7011–7023. https://doi.org/10.1109/TVT.2019.2916992

    Article  Google Scholar 

  135. Lai, P., Bai, H., Huang, Y., Chen, Z., & Liu, T. (2019). Performance evaluation of underlay cognitive hybrid satellite-terrestrial relay networks with relay selection scheme. IET Communications, 13, 2550–2557. https://doi.org/10.1049/iet-com.2018.5333

    Article  Google Scholar 

  136. Hamoud, O. N., Kenaza, T., & Challal, Y. (2018). Security in device-to-device communications: A survey. IET Networks, 7, 14–22. https://doi.org/10.1049/iet-net.2017.0119

    Article  Google Scholar 

  137. Haus, M., Waqas, M., Ding, A. Y., Li, Y., & Member, S. (2017). Security and privacy in device-to-device ( D2D ) communication : A review. IEEE Communications Surveys and Tutorials, 19, 1054–1079.

    Article  Google Scholar 

  138. Yue, J., Ma, C., Yu, H., & Zhou, W. (2013). Secrecy-based access control for device-to-device communication underlaying cellular networks. IEEE Communications Letters, 17, 2068–2071. https://doi.org/10.1109/LCOMM.2013.092813.131367

    Article  Google Scholar 

  139. Zhang, R., Cheng, X., & Yang, L. (2016). Cooperation via spectrum sharing for physical layer security in device-to-device communications Underlaying cellular networks. IEEE Transactions on Wireless Communications, 15, 5651–5663. https://doi.org/10.1109/TWC.2016.2565579

    Article  Google Scholar 

  140. Wang, R., Liu, K., Wu, D., Wang, H., & Yan, J. (2017). Malicious-behavior-aware D2D Link selection mechanism. IEEE Access, 5, 15162–15173. https://doi.org/10.1109/ACCESS.2017.2734807

    Article  Google Scholar 

  141. Hao, P., Wang, X., & Shen, W. (2018). A Collaborative PHY-Aided Technique for End-to-End IoT Device Authentication. IEEE Access, 6, 42279–42293. https://doi.org/10.1109/ACCESS.2018.2859781

    Article  Google Scholar 

  142. Qian, H., Yu, J., & Hua, L. (2019). Relay selection algorithm based on social network combined with Q-learning for vehicle D2D communication. IET Communications, 13, 3582–3587. https://doi.org/10.1049/iet-com.2019.0419

    Article  Google Scholar 

  143. Luo, Y., Feng, Z., Jiang, H., Yang, Y., Huang, Y., & Yao, J. (2019). Game-theoretic learning approaches for secure D2D communications against full-duplex active eavesdropper. IEEE Access, 7, 41324–41335. https://doi.org/10.1109/ACCESS.2019.2906845

    Article  Google Scholar 

  144. Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of Important Issues in UAV communication networks. IEEE Communications Surveys and Tutorials, 18, 1123–1152. https://doi.org/10.1109/COMST.2015.2495297

    Article  Google Scholar 

  145. Fotouhi, A., Qiang, H., Ding, M., Hassan, M., Giordano, L. G., Garcia-Rodriguez, A., et al. (2019). Survey on UAV cellular communications: Practical aspects, standardization advancements, regulation, and security challenges. IEEE Communications Surveys and Tutorials, 21, 3417–3442. https://doi.org/10.1109/COMST.2019.2906228

    Article  Google Scholar 

  146. Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., et al. (2019). Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access, 7, 48572–48634. https://doi.org/10.1109/ACCESS.2019.2909530

    Article  Google Scholar 

  147. Ma, R., Yang, W., Zhang, Y., Liu, J., & Shi, H. (2019). Secure mmWave communication using UAV-enabled relay and cooperative jammer. IEEE Access, 7, 119729–119741. https://doi.org/10.1109/access.2019.2933231

    Article  Google Scholar 

  148. Huang, K. W., & Wang, H. M. (2018). Combating the Control Signal Spoofing Attack in UAV Systems. IEEE Transactions on Vehicular Technology, 67, 7769–7773. https://doi.org/10.1109/TVT.2018.2830345

    Article  Google Scholar 

  149. Shoufan, A., Al-Angari, H. M., Sheikh, M. F. A., & Damiani, E. (2018). Drone pilot identification by classifying radio-control signals. IEEE Transactions on Information Forensics and Security, 13, 2439–2447. https://doi.org/10.1109/TIFS.2018.2819126

    Article  Google Scholar 

  150. Wang, B., Sun, Y., Sheng, Z., Nguyen, H. M., & Duong, T. Q. (2019). Inconspicuous manipulation for social-aware relay selection in flying internet of things. IEEE Wireless Communications Letters, 8, 1394–1397. https://doi.org/10.1109/LWC.2019.2919536

    Article  Google Scholar 

  151. Huang, H., Yang, Y., Wang, H., Ding, Z., Sari, H., & Adachi, F. (2020). Deep reinforcement learning for UAV navigation through massive MIMO technique. IEEE Transactions on Vehicular Technology, 69, 1117–1121. https://doi.org/10.1109/TVT.2019.2952549

    Article  Google Scholar 

  152. Makhdoom, I., Abolhasan, M., Lipman, J., Liu, R. P., & Ni, W. (2019). Anatomy of threats to the internet of things. IEEE Communications Surveys and Tutorials, 21, 1636–1675. https://doi.org/10.1109/COMST.2018.2874978

    Article  Google Scholar 

  153. Xiao, L., Wan, X., Lu, X., Zhang, Y., & Wu, D. (2018). IoT security techniques based on machine learning: How do IoT devices use ai to enhance security? IEEE Signal Processing Magazine, 35, 41–49. https://doi.org/10.1109/MSP.2018.2825478

    Article  Google Scholar 

  154. Zhang, Y., Shen, Y., Wang, H., Yong, J., & Jiang, X. (2016). On secure wireless communications for IoT under Eavesdropper Collusion. IEEE Transactions on Automation Science and Engineering, 13, 1281–1293. https://doi.org/10.1109/TASE.2015.2497663

    Article  Google Scholar 

  155. Letafati, M., Kuhestani, A., & Behroozi, H. (2020). Three-hop untrusted relay networks with hardware imperfections and channel estimation errors for internet of things. IEEE Transactions on Information Forensics and Security, 15, 2856–2868. https://doi.org/10.1109/TIFS.2020.2978627

    Article  Google Scholar 

  156. Dai, L., Wang, B., Jiao, R., Ding, Z., Han, S., & Chih-Lin, I. (2018). Nonorthogonal multiple access for 5G. 5G Networks: Fundamental requirements Enabling Technologies, and Operations Management, 20, 135–203. https://doi.org/10.1002/9781119333142.ch4

    Article  Google Scholar 

  157. Vaezi, M., Aruma Baduge, G. A., Liu, Y., Arafa, A., Fang, F., & Ding, Z. (2019). Interplay between NOMA and Other Emerging Technologies: A Survey. IEEE Transactions on Cognitive Communications and Networking, 5, 900–919. https://doi.org/10.1109/TCCN.2019.2933835

    Article  Google Scholar 

  158. Lei, H., Zhang, J., Park, K. H., Xu, P., Ansari, I. S., Pan, G., et al. (2017). On secure NOMA Systems With Transmit Antenna Selection Schemes. IEEE Access, 5, 17450–17464. https://doi.org/10.1109/ACCESS.2017.2737330

    Article  Google Scholar 

  159. Lei, H., Zhang, J., Park, K. H., Xu, P., Zhang, Z., Pan, G., et al. (2018). Secrecy outage of max-min TAS scheme in MIMO-NOMA systems. IEEE Transactions on Vehicular Technology, 67, 6981–6990. https://doi.org/10.1109/TVT.2018.2824310

    Article  Google Scholar 

  160. Lei, H., Yang, Z., Park, K. H., Ansari, I. S., Guo, Y., Pan, G., et al. (2019). Secrecy outage analysis for cooperative NOMA systems with relay selection schemes. IEEE Transactions on Communications, 67, 6282–6298. https://doi.org/10.1109/TCOMM.2019.2916070

    Article  Google Scholar 

  161. Chen, J., Yang, L., & Alouini, M. S. (2018). Physical layer security for cooperative NOMA systems. IEEE Transactions on Vehicular Technology, 67, 4645–4649. https://doi.org/10.1109/TVT.2017.2789223

    Article  Google Scholar 

  162. Wang, Z., & Peng, Z. (2019). Secrecy performance analysis of relay selection in cooperative NOMA systems. IEEE Access, 7, 86274–86287. https://doi.org/10.1109/ACCESS.2019.2925380

    Article  Google Scholar 

  163. Yu, C., Ko, H. L., Peng, X., Xie, W., & Zhu, P. (2019). Jammer-aided secure communications for cooperative NOMA systems. IEEE Communications Letters, 23, 1935–1939. https://doi.org/10.1109/LCOMM.2019.2934410

    Article  Google Scholar 

  164. Cao, K., Wang, B., Ding, H., Li, T., & Gong, F. (2020). Optimal Relay Selection For Secure NOMA systems under untrusted users. IEEE Transactions on Vehicular Technology, 69, 1942–1955. https://doi.org/10.1109/TVT.2019.2962860

    Article  Google Scholar 

  165. Pei, X., Yu, H., Wen, M., Li, Q., & Ding, Z. (2020). Secure outage analysis for cooperative NOMA Systems With Antenna Selection. IEEE Transactions on Vehicular Technology, 69, 1–1. https://doi.org/10.1109/tvt.2020.2973726

    Article  Google Scholar 

  166. Qu, F., Wu, Z., Wang, F., & Cho, W. (2015). A security and privacy review of VANETs. IEEE Transactions on Intelligent Transportation Systems, 16, 2985–2996. https://doi.org/10.1109/TITS.2015.2439292

    Article  Google Scholar 

  167. Xiao, L., Lu, X., Xu, D., Tang, Y., Wang, L., & Zhuang, W. (2018). UAV relay in VANETs against smart jamming with reinforcement learning. IEEE Transactions on Vehicular Technology, 67, 4087–4097. https://doi.org/10.1109/TVT.2018.2789466

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by University Grants Commission (UGC), India, under UGC-NET scheme for Electronic science with reference number 22482/(OBC)/(NET-DEC.-2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Kamboj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The list of used acronyms and their full form is mentioned in Table 13.

Table 13 List of Abbreviations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamboj, A.K., Jindal, P. & Verma, P. Machine learning-based physical layer security: techniques, open challenges, and applications. Wireless Netw 27, 5351–5383 (2021). https://doi.org/10.1007/s11276-021-02781-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02781-1

Keywords

Navigation