Skip to main content

Advertisement

Log in

Energy-efficient data sensing and routing in unreliable energy-harvesting wireless sensor network

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Energy-harvesting wireless sensor network (WSN) is composed of unreliable wireless channels and resource-constrained nodes which are powered by solar panels and solar cells. Energy-harvesting WSNs can provide perpetual data service by harvesting energy from surrounding environments. Due to the random characteristics of harvested energy and unreliability of wireless channel, energy efficiency is one of the main challenging issues. In this paper, we are concerned with how to decide the energy used for data sensing and transmission adaptively to maximize network utility, and how to route all the collected data to the sink along energy-efficient paths to maximize the residual battery energy of nodes. To solve this problem, we first formulate a heuristic energy-efficient data sensing and routing problem. Then, unlike the most existing work that focuses on energy-efficient data sensing and energy-efficient routing respectively, energy-efficient data sensing and routing scheme (EEDSRS) in unreliable energy-harvesting wireless sensor network is developed. EEDSRS takes account of not only the energy-efficient data sensing but also the energy-efficient routing. EEDSRS is divided into three steps: (1) an adaptive exponentially weighted moving average algorithm to estimate link quality. (2) an distributed energetic-sustainable data sensing rate allocation algorithm to allocate the energy for data sensing and routing. According to the allocated energy, the optimal data sensing rate to maximize the network utility is obtained. (3) a geographic routing with unreliable link protocol to route all the collected data to the sink along energy-efficient paths. Finally, extensive simulations to evaluate the performance of the proposed EEDSRS are performed. The experimental results demonstrate that the proposed EEDSRS is very promising and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Energy scavengers provide unlimited energy to sensor node

References

  1. Yao, Y., Cao, Q., & Vasilakos, A. V. (2015). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.

    Article  Google Scholar 

  2. He, S., Chen, J., Jiang, F., Yau, D. K. Y., Xing, G., & Sun, Y. (2013). Energy provisioning in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 12(10), 1931–1942.

    Article  Google Scholar 

  3. Guo, S., Wang, C., & Yang, Y. (2014). Joint mobile data gathering and energy provisioning in wireless rechargeable sensor networks. IEEE Transactions on Moble Computing, 13(12), 2836–2852.

    Article  Google Scholar 

  4. Zhao, M., Li, J., & Yang, Y. (2014). A framework of joint mobile energy replenishment and data gathering in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 13(12), 2689–2705.

    Article  Google Scholar 

  5. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.

    Article  Google Scholar 

  6. Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2012). Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications Surveys, 15(2), 551–591.

    Article  Google Scholar 

  7. Li, F., & Wang, Y. (2008). Routing in vehicular ad hoc networks: A survey. IEEE Vehicuar Technology Magazine, 2(2), 12–22.

    Article  Google Scholar 

  8. Prathap, U., Shenoy, P. D., Venugopal, K. R., & Patnaik, L. M. (2012). Wireless sensor networks applications and routing protocols: Survey and research challenges. In Proceedings of international symposium on ISCOS.

  9. Muruganathan, S. D., Ma, D. C. F., Bhasin, R. I., & Fapojuwo, A. O. (2005). A centralized energy-efficient routing protocol for wireless sensor networks. IEEE Communications Magazine, 43(3), 8–13.

    Article  Google Scholar 

  10. Ergen, S. C., & Varaiya, P. (2007). Energy efficient routing with delay guarantee for sensor notworks. Wireless Networks, 13(5), 679–690.

    Article  Google Scholar 

  11. Zhu, J., & Wang, X. (2011). Model and protocol for energy-efficient routing over mobile ad hoc networks. IEEE Transactions on Mobile Computing, 10(11), 1546–1557.

    Article  Google Scholar 

  12. Voigt, T., Ritter, H., & Schiller, J. (2003). Utilizing solar power in wireless sensor networks. In 28th Annual IEEE international conference on LCN’03.

  13. Eu, Z. A., Tan, H. P., & Seah, W. K. G. (2009). Routing and relay node placement in wireless sensor networks powered by ambient energy harvesting. In Proceedings of IEEE wireless communications and networking conference.

  14. Lin, L., Shroff, N. B., & Srikant, R. (2007). Asymptotically optimal power aware routing for multihop wireless networks with renewable energy sources. IEEE/ACM Transactions on Networking, 15(5), 1021–1034.

    Article  Google Scholar 

  15. Ou, C. H., & Ssu, K. F. (2008). Flying anchors in three-dimensional wireless sensor networks. IEEE Transactions on Mobile Computing, 7(9), 1084–1097.

    Article  Google Scholar 

  16. Wang, J., Ghost, R. K., & Das, S. K. (2010). A survey on sensor localization. Journal of Control Theory and Applications, 8(1), 2–11.

    Article  MATH  Google Scholar 

  17. Frey, H. (2004). Scalable geographic routing algorithms for wireless ad hoc networks. IEEE Network, 18(4), 18–22.

    Article  Google Scholar 

  18. Xing, G., Lu, C., Pless, R., & Huang, Q. (2004). On greedy geographic routing algorithms in sensing-covered networks. In Proceedings of MobiHoc’04.

  19. Zhang, H., & Shen, H. (2010). Energy-efficient beaconless geographic routing in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 21(6), 881–896.

    Article  Google Scholar 

  20. Lim, T. L., & Mohan, G. (2005). Energy aware geographical routing and topology control to improve network lifetime in wireless sensor networks. In Proceedings of 2nd international conference on broadband networks.

  21. Haider, R., Javed, M. Y., & Khattak, N. S. (2007). EAGR: Energy aware greedy routing in sensor networks. In: Proceedings of FGCN.

  22. Huang, H., Hu, G., & Yu, F. (2013). Energy-aware geographic routing in wireless sensor networks with anchor nodes. International Journal of Communication Systems, 26(1), 100–113.

    Article  Google Scholar 

  23. Seada, K., Zuniga, M., Helmy, A., & Krishnamachari, B. (2004). Energy-efficient forwarding strategies for geographic routing in lossy wireless sensor networks. In Proceedings of ACM SenSys’04.

  24. Zeng, K., Ren, K., Lou, W., & Moran, P. J. (2009). Energy aware efficient geographic routing in lossy wireless sensor networks with environment energy supply. Wireless Networks, 15(1), 39–51.

    Article  Google Scholar 

  25. Hou, Y. T., Shi, Y., & Sherali, H. D. (2004). Rate allocation in wireless sensor networks with network lifetime requirement. In Proceedings of MobiHoc’04.

  26. Fan, K. W., Zheng, Z., & Sinha, P. (2008). Steady and fair rate allocation for rechareable sensors in perpetual sensor networks. In Proceedings of SenSys’08.

  27. Toh, C. (2002). Maximum battery life routing to support ubiquitous mobile compting in wireless ad hoc networks. IEEE Communications Magazine, 39(6), 138–147.

    Article  Google Scholar 

  28. Madan, R., & Lall, S. (2006). Distributed algorithms for maximum lifetime routing in wireless sensor networks. IEEE Transactions on Wireless Communications, 5(8), 2185–2193.

    Article  Google Scholar 

  29. Gatzianas, M., & Georgiadis, L. (2008). A distributed algorithm for maximum lifetime routing in sensor networks with mobile sink. IEEE Transactions on Wireless Communications, 7(3), 984–994.

    Article  Google Scholar 

  30. Karkvandi, H. R., Pecht, E., & Yadid-Pecht, O. (2011). Effective lifetime-aware routing in wireless sensor networks. IEEE Sensors Journal, 11(12), 3359–3367.

    Article  Google Scholar 

  31. Liu, A., Ren, J., Li, X., Chen, Z., & Shen, X. (2012). Design principles and improvement of cost function based energy aware routing algorithms for wireless sensor networks. Computer Networks, 56(7), 1951–1967.

    Article  Google Scholar 

  32. Liu, R. S., Sinha, P., & Koksal, C. E. (2010). Joint energy management and resource allocation in rechargeable sensor networks. In Proceedings of IEEE INFOCOM.

  33. Chen, S., Sinha, P., Shroff, N. B., & Joo, C. (2011). Finite-horizon energy allocation and routing scheme in rechargeable sensor network. In Proceedings of IEEE INFOCOM.

  34. Chen, S., Sinha, P., Shroff, N. B., & Joo, C. (2012). A simple asymptotically optimal energy allocation and routing scheme in rechargeable sensor networks. In Proceedings of IEEE INFOCOM.

  35. Zhang, Y., He, S., & Chen, J. (2013). Data gathering optimization by dynamic sensing and routing in rechargeable sensor networks. In Proceedings of IEEE international conference on SECON.

  36. Cerpa, A., Wong, J. L., Kuang, L., Potkonjak, M., & Estrin, D. (2005). Statistical model of lossy links in wireless sensor networks. In Proceedings of IPSN.

  37. Guo, S., He, L., Gu, Y., Jiang, B., & He, T. (2014). Opportunistic flooding in low-duty-cycle wireless sensor networks with unreliable links. IEEE Transactions on Computers, 63(11), 2787–2802.

    Article  MathSciNet  MATH  Google Scholar 

  38. Na, J., Soroker, D., & Kim, C. K. (2007). Greedy geographic routing using dynamic potential field for wireless ad hoc networks. IEEE Communications Letters, 11(3), 243–245.

    Article  Google Scholar 

  39. Lee, S., Bhattacharjee, B., & Banerjee, S. (2005). Efficient geographic routing in multihop wireless networks. In Proceedings of the 6th ACM international symposium on MobiHoc’05.

  40. Zamalloa, M. Z., Seada, K., Krishnamachari, B., & Helmy, A. (2008). Efficient geographic routing over lossy links in wireless sensor networks. ACM Transactions on Sensor Networks 4(3).

  41. Yu, Y., Govindan, R., & Estrin, D. Geographical and energy aware routing: A recursive data dissemination protocol for wireless sensor networks. http://www.citeulike.org/group/1388/article/700446.

  42. Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys and Turorials, 13(3), 443–461.

    Article  Google Scholar 

  43. National Renewable Energy Laboratory. (2013). http://www.nrel.gov.

  44. Woo, A., & Culler, D. Evaluation of efficient link reliability estimators for low-power wireless networks. http://vm133.lib.berkeley.edu:90/reports/TRWebData/accessPages/CSD-03-1270.html.

  45. Low, S. H., & Lapsley, D. E. (1999). Optimization flow control-I: Basic algorithm and convergence. IEEE/ACM Transactions on Networking, 7(6), 861–874.

    Article  Google Scholar 

  46. Xiao, L., Johansson, M., & Boyd, S. P. (2004). Simultaneous routing and resource allocation via dual decomposition. IEEE Transactions on Communications, 52(7), 1136–1144.

    Article  Google Scholar 

  47. Shi, C., Lu, J., & Zhang, G. (2005). An extended Kuhn–Tucker approach for linear bilevel programming. Applied Mathematics and Computation, 162(4), 51–63.

    Article  MathSciNet  MATH  Google Scholar 

  48. Zeng, K., Lou, W., Ren, K., & Moran, P. J. (2006). Energy-efficient geographic routing in environmentally powered wireless sensor networks. In Proceedings of IEEE MILCOM.

  49. Couto, D., Aguayo, D., Bicket, J., & Morris, R. (2003). A high-throughput path metric for multi-hop wireless routing. In Proceedings of ACM MobiCom’03.

  50. Zeng, X., Bagrodia, R., & Gerla, M. (1998). GloMoSim: A library for parallel simulation of large-scale wireless networks. In Proceedings of PADS’98.

  51. Punnoose, R. J., Nikitin, P. V., & Stancil, D. D. (2000). Efficient simulation of Ricean fading within a packet simulator. In Proceedings of IEEE-VTS Fall VTC.

Download references

Acknowledgments

The authors would like to thank the reviewers and the editors for their valuable suggestions and comments that helped improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Liu, G. & Chang, S. Energy-efficient data sensing and routing in unreliable energy-harvesting wireless sensor network. Wireless Netw 24, 611–625 (2018). https://doi.org/10.1007/s11276-016-1360-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1360-6

Keywords

Navigation