Skip to main content

Advertisement

Log in

A distributed lightweight Redundancy aware Topology Control Protocol for wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

WSN consists of a large number of sensor nodes randomly deployed, and, in many cases, it is impossible to replace sensors when a node failure occurs. Thus, applications tend to deploy more nodes than necessary to cope with possible node failures and to increase the network lifetime, which leads to create some sensing and communication redundancy. However, sensors in the same region, may collect and forward the same information, which will waste more energy. In this paper, we propose a distributed Lightweight Redundancy aware Topology Control Protocol (LRTCP) for wireless sensor networks. It exploits the sensor redundancy in the same region by dividing the network into groups so that a connected backbone can be maintained by keeping a minimum of working nodes and turning off the redundant ones. LRTCP identifies equivalent nodes in terms of communication based on their redundancy degrees with respect of some eligibility rules. Simulation results indicate that, compared with existing distributed topology control algorithms, LRTCP improves network capacity and energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ababneh, N., Viglas, A., Labiod, H., & Boukhatem, N. (2009). Ectc: Energy efficient topology control algorithm for wireless sensor networks. In Proceedings of IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks and Workshops (WOWMOM) (pp. 1–9).

  2. Anastasi, G., Di Francesco, M., Conti, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.

    Article  Google Scholar 

  3. Basagni, S., Carosi, A., Melachrinoudis, E., Petrioli, C., & Wang, Z. (2008). Controlled sink mobility for prolonging wireless sensor networks lifetime. Wireless Networks, 14(6), 831–858.

    Article  Google Scholar 

  4. Busse, M., Haenselmann, T., & Effelsberg, W. (2006). Teca: A topology and energy control algorithm for wireless sensor networks. Proceedings of 9th ACM international symposium on Modeling analysis and simulation of wireless and mobile systems (MSWiM) (pp. 317–321).

  5. Cardei, M., Wu, J., & Yang, S. (2004). Topology control in ad hoc wireless networks with hitch-hiking. Proceedings of the 1st Anual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (SECON) (pp. 480–488).

  6. Cerpa, A., & Estrin, D. (2004). Ascent : Adaptive self-configuring sensor networks topologies. IEEE Transaction on Mobile Computing, 3(3), 272–285.

    Article  Google Scholar 

  7. Chen, B., Jamieson, K., Balakrishnan, H., & Morris, R. (2002). Span: An energy-efficient coordinator algorithm for topology maintenance in ad hoc wireless networks. ACM Wireless Networks, 8(5), 481–494.

    Article  MATH  Google Scholar 

  8. Chenait, M., Zebbane, B., Belbezza, H., Balli, H., & Badache, N. (2013). Distributed and stable energy-efficient scheduling algorithm for coverage in wireless sensor networks. Proceedings of the 9th IEEE International Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 418–423).

  9. Ding, Y., Wang, C., & Xiao, L. (2009). An adaptive partitioning scheme for sleep scheduling and topology control in wireless sensor networks. IEEE Transaction on Parallel and Distributed Systems, 20(9), 1352–1365.

    Article  Google Scholar 

  10. Dondi, D., Bertacchini, A., Brunelli, D., Larcher, L., & Benini, L. (2008). Modeling and optimization of a solar energy harvester system for selfpowered wireless sensor networks. IEEE Transactions on Industrial Electronics, 55(7), 2759–2766.

    Article  Google Scholar 

  11. Frye, L., & Cheng, L. (2009). Topology management for wireless sensor networks. In S. Misra et al. (Eds.), Guide to wireless sensor networks. Computer Communications and Networks (Chap. 2, pp. 27–45). London: Springer. doi:10.1007/978-1-84882-218-4.

    Chapter  Google Scholar 

  12. Gu, L., & Stankovic, J. (2005). Radio-triggered wake-up for wireless sensor networks. Real-Time Systems, 29(2), 157–182.

    Article  Google Scholar 

  13. Li, M., Li, Z., & Vasilakos, A. V. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.

    Article  Google Scholar 

  14. Li, N., Hou, J., & Sha, L. (2005). Design and analysis of an mst-based topology control algorithm. IEEE Transactions on Wireless Communications, 4(3), 1195–1206.

    Article  Google Scholar 

  15. Lin, S., Zhang, J., Zhou, G., Gu, L., Stankovic, J., & He, T. (2006). Atpc: Adaptive transmission power control for wireless sensor networks. Proceedings of the 4th international conference on Embedded networked sensor systems (SenSys) (pp. 223–236).

  16. Liu, X. Y., Zhu, Y., Kong, L., Liu, C., Gu, Y., Vasilakos, A. V., et al. (2015). Cdc: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.

    Article  Google Scholar 

  17. Nan, G., Shi, G., Mao, Z., & Li, M. (2012). Cdsws: Coverage-guaranteed distributed sleep/wake scheduling for wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 44(1), 1–14.

    Google Scholar 

  18. Ok, C. S., Lee, S., Mitra, P., & Kumara, S. (2009). Distributed energy balanced routing for wireless sensor networks. Computers & Industrial Engineering, 57(1), 125–135.

    Article  Google Scholar 

  19. Rajendran, V., Obraczka, K., & Garcia-Luna-Aceves, J. (2006). Energy-efficient, collision-free medium access control for wireless sensor networks. Wireless Networks, 12(1), 63–78.

    Article  Google Scholar 

  20. Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104–122.

    Article  Google Scholar 

  21. Renold, A., & Chandrakala, S. (2016). Survey on state scheduling-based topology control in unattended wireless sensor networks. Computers and Electrical Engineering,. doi:10.1016/j.compeleceng.2015.12.024.

    Google Scholar 

  22. Santi, P. (2005). Topology control in wireless ad hoc and sensor networks. ACM Computing Surveys, 37(2), 164–194.

    Article  MathSciNet  Google Scholar 

  23. Tian, D., & Georganas, N. (2005). Connectivity maintenance and coverage preservation in wireless sensor networks. Ad Hoc Networks, 3(6), 744–761.

    Article  Google Scholar 

  24. Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., & Gill, C. (2003). Integrated coverage and connectivity configuration in wireless sensor networks. Proceedings of the 1st ACM International Conference on Embedded Networked Sensor Systems (Sensys) (pp. 28–39).

  25. Warrier, A., Park, S., Mina, J., & Rheea, I. (2007). How much energy saving does topology control offer for wireless sensor networks? A practical study. Computer Communications, 30(14–15), 2867–2879.

    Article  Google Scholar 

  26. Wattenhofer, R., & Zollinger, A. (2004). Xtc: A practical topology control algorithm for ad-hoc networks. Proceedings of 18th International Parallel and Distributed Processing Symposium(IPDPS) (pp. 216–222).

  27. Xiang, L., Luo, J., & Vasilakos, A.V. (2011). Compressed data aggregation for energy efficient wireless sensor networks. Proceedings of the 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON) (pp. 46–54).

  28. Xu, X., Ansari, R., Khokhar, A., & Vasilakos, A. V. (2015). Hierarchical data aggregation using compressive sensing (HDACS)in wsns. ACM Transactions on Sensor Networks, 11(3), 125–135.

    Article  Google Scholar 

  29. Xu, Y., Heidemann, J., & Estrin, D. (2001). Geography-informed energy conservation for ad hoc routing. Proceedings of 7th annual ACM/IEEE Int’l Conf. Mobile Computing and Networking (ACM Mobicom), Italy (pp. 70–84).

  30. Yin, B., Shi, H., & Shang, Y. (2005). A two-level strategy for topology control in wireless sensor networks. Proceedings of 11th International Conference on Parallel and Distributed Systems, ICPADS (pp. 358–362).

  31. Younis, M., Senturk, I. F., Akkaya, K., Lee, S., & Senel, F. (2014). Topology management techniques for tolerating node failures in wireless sensor networks: A survey. Computer Networks, 58, 254–283.

    Article  Google Scholar 

  32. Zebbane, B., Chenait, M., & Badache, N. (2013). Exploiting node redundancy for maximizing wireless sensor network lifetime. Proceedings of IEEE/IFIP Wireless Days (WD) (pp. 1–3).

  33. Zebbane, B., Chenait, M., & Badache, N. (2013). GTC: A geographical topology control protocol to conserve energy in wireless sensor networks. International Journal of Trust Management in Computing and Communications (IJTMCC), 3/4(1), 320–340.

    Article  Google Scholar 

  34. Zebbane, B., Chenait, M., & Badache, N. (2014). Rtcp: Redundancy aware topology control protocol for wireless sensor networks. Proceedings of 1st IEEE International Conference on Information and Communication Technologies for Disaster Management(ICT-DM) (pp. 118–123).

  35. Zebbane, B., Chenait, M., & Badache, N. (2015). A group-based energy-saving algorithm for sleep/wake scheduling and topology control in wireless sensor networks. Wireless Personal Communications, 84(2), 959–983.

    Article  Google Scholar 

  36. Zhang, H., & Hou, J. (2005). Maintaining sensing coverage and connectivity in large sensor networks. Wireless Ad Hoc and Sensor Networks, 1(1–2), 89–124.

    Google Scholar 

  37. Zhang, X. M., Zhang, Y., Yan, F., & Vasilakos, A. V. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahia Zebbane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zebbane, B., Chenait, M. & Badache, N. A distributed lightweight Redundancy aware Topology Control Protocol for wireless sensor networks. Wireless Netw 23, 1779–1792 (2017). https://doi.org/10.1007/s11276-016-1248-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1248-5

Keywords

Navigation