Skip to main content
Log in

Degradation and metagenomic analysis of 4-chlorophenol utilizing multiple metal tolerant bacterial consortium

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Chlorophenols are persistent environmental pollutants used in synthesizing dyes, drugs, pesticides, and other industrial products. The chlorophenols released from these processes seriously threaten the environment and human health. The present study describes 4-chlorophenol (4-CP) degradation activity and metagenome structure of a bacterial consortium enriched in a 4-CP-containing medium. The consortium utilized 4-CP as a single carbon source at a wide pH range, temperature, and in the presence of heavy metals. The immobilized consortium retained its degradation capacity for an extended period. The 4-aminoantipyrine colorimetric analysis revealed complete mineralization of 4-CP up to 200 mg/L concentration and followed the zero-order kinetics. The addition of glycerol and yeast extract enhanced the degradation efficiency. The consortium showed both ortho- and meta-cleavage activity of catechol dioxygenase. Whole genome sequence (WGS) analysis revealed the microbial compositions and functional genes related to xenobiotic degradation pathways. The identified genes were mapped on the KEGG database to construct the 4-CP degradation pathway. The results exhibited the high potential of the consortium for bioremediation of 4-CP contaminated sites. To our knowledge, this is the first report on WGS analysis of a 4-CP degrading bacterial consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the article.

References

  • Adhikari S, Sarkar D, Madras G (2017) Hierarchical design of CuS architectures for visible light photocatalysis of 4-chlorophenol. ACS Omega 2:4009–4021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allaboun H, Abu Al-Rub FA (2016) Removal of 4-chlorophenol from contaminated water using activated carbon from dried date pits: equilibrium, kinetics, and thermodynamics analyses. Materials 9:251

    Article  PubMed  PubMed Central  Google Scholar 

  • Arora PK, Bae H (2014) Bacterial degradation of chlorophenols and their derivatives. Microb Cell Factories 13:1–17

    Article  Google Scholar 

  • Bandyopadhyay K, Das D, Maiti BR (1998) Kinetics of phenol degradation using Pseudomonas putida MTCC 1194. Bioprocess Eng 18:373–377

    CAS  Google Scholar 

  • Bartha R, Bossert I (1984) The fate of petroleum in the soil ecosystems. Petroleum Microbiology. Macmillan, New York, pp 435–473

    Google Scholar 

  • Benjamin S, Kamimura N, Takahashi K, Masai E (2016) Achromobacter denitrificans SP1 efficiently utilizes 16 phthalate diesters and their downstream products through protocatechuate 3,4-cleavage pathway. Ecotoxicol Environ Saf 134:172–178

    Article  CAS  Google Scholar 

  • Bjerketorp J, Röling WF, Feng XM, Garcia AH, Heipieper HJ, Håkansson S (2018) Formulation and stabilization of an Arthrobacter strain with good storage stability and 4-chlorophenol-degradation activity for bioremediation. Appl Microbiol Biotechnol 102:2031–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushnell LD, Haas HF (1941) The utilization of certain hydrocarbons by microorganisms. J Bacteriol 41:653–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chettri B, Mukherjee A, Langpoklakpam JS, Chattopadhyay D, Singh AK (2016) Kinetics of nutrient enhanced crude oil degradation by Pseudomonas aeruginosa AKS1 and Bacillus sp. AKS2 isolated from Guwahati refinery. India Environ Pollut 216:548–558

    Article  CAS  PubMed  Google Scholar 

  • Chettri B, Singh AK (2019) Kinetics of hydrocarbon degradation by a newly isolated heavy metal tolerant bacterium Novosphingobium panipatense P5. ABC Bioresour Technol 294:122–190

    Google Scholar 

  • Dan X, Luo Z, Dai M, Zhang M, Yue X, Xie S (2021) Oxidative degradation of p-chlorophenol by ferrate (VI): kinetics, intermediates and pathways. J Environ Chem Eng 9:105810

    Article  CAS  Google Scholar 

  • Duan X, Tian L, Liu W, Chang L (2013) Study on electrochemical oxidation of 4-chlorophenol on a vitreous carbon electrode using cyclic voltammetry. Electrochim Acta 94:192–197

    Article  CAS  Google Scholar 

  • Ettala M, Koskela J, Kiesilä A (1992) Removal of chlorophenols in a municipal sewage treatment plant using activated sludge. Water Res 26:797–804

    Article  CAS  Google Scholar 

  • Fakhruddin ANM, Quilty B (2005) The influence of glucose and fructose on the degradation of 2-chlorophenol by Pseudomonas putida CP1. World J Microbiol Biotechnol 21:1541–1548

    Article  CAS  Google Scholar 

  • Farag AM, Fawzy A, El-Naggar MY, Ghanem KM (2021) Biodegradation and enhancement of 2,4-dichlorophenol by marine halophilic Bacillus subtilis AAK. Egypt J Aquat Res 47:117–123

    Article  Google Scholar 

  • Farrell A, Quilty B (1999) Degradation of mono-chlorophenols by a mixed microbial community via a meta-cleavage pathway. Biodegradation 10:353–362

    Article  CAS  PubMed  Google Scholar 

  • Farrell A, Quilty B (2002) Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol. J Ind Microbiol Biotechnol 28:316–324

    Article  CAS  PubMed  Google Scholar 

  • Fletcher KE, Costanza J, Pennell KD, Löffler FE (2011) Electron donor availability for microbial reductive processes following thermal treatment. Water Res 45:6625–6636

    Article  CAS  PubMed  Google Scholar 

  • Gallego A, Gemini V, Rossi S, Fortunato MS, Planes E, Gómez CE, Korol SE (2009) Detoxification of 2,4,6-trichlorophenol by an indigenous bacterial community. Int Biodeterior Biodegrad 63:1073–1078

    Article  CAS  Google Scholar 

  • Gao Y, Liu M, Zhao X, Zhang X, Zhou F (2021) Paracoccus and Achromobacter bacteria contribute to rapid biodegradation of imidacloprid in soils. Ecotoxicol Environ Saf 225:112785

    Article  CAS  PubMed  Google Scholar 

  • Gaya UI, Abdullah AH, Zainal Z, Hussein MZ (2009) Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: Intermediates, influence of dosage and inorganic anions. J Hazard Mater 168:57–63

    Article  CAS  PubMed  Google Scholar 

  • Ge T, Han J, Qi Y, Gu X, Ma L, Zhang C, Huang D (2017) The toxic effects of chlorophenols and associated mechanisms in fish. Aquat Toxicol 184:78–93

    Article  CAS  PubMed  Google Scholar 

  • Giller KE, Witter E, Mcgrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Gómez-Acata S, Esquivel-Ríos I, Pérez-Sandoval MV, Navarro-Noya Y, Rojas-Valdez A, Thalasso F, Dendooven L (2017) Bacterial community structure within an activated sludge reactor added with phenolic compounds. Appl Microbiol Biotechnol 101:3405–3414

    Article  PubMed  Google Scholar 

  • Gómez-Acata S, Vital-Jácome M, Pérez-Sandoval MV, Navarro-Noya YE, Thalasso F, Luna-Guido M, Dendooven L (2018) Microbial community structure in aerobic and fluffy granules formed in a sequencing batch reactor supplied with 4-chlorophenol at different settling times. J Hazard Mater 342:606–616

    Article  PubMed  Google Scholar 

  • Konovalova EI, Solyanikova IP, Golovleva LA (2009) Degradation of 4-chlorophenol by the strain Rhodococcus opacus 6a. Microbiology 78:805–807

    Article  CAS  Google Scholar 

  • Kuo CW, Genthner B (1996) Effect of added heavy metal ions on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacterial consortia. Appl Environ Microbiol 62:2317–2323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwean OS, Cho SY, Yang JW, Cho W, Park S, Lim Y, Kim HS (2018) 4-Chlorophenol biodegradation facilitator composed of recombinant multi-biocatalysts immobilized onto montmorillonite. Bioresour Technol 259:268–275

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Ma WJ, Cheng YF, Jin RC (2022) Comprehensive evaluation of the long-term effect of Cu2+ on denitrifying granular sludge and feasibility of in situ recovery by phosphate. J Hazard Mater 422:126901

    Article  CAS  PubMed  Google Scholar 

  • Mawad AM, Hesham AEL, Mostafa YM, Shoriet A (2016) Pyrene degrading Achromobacter denitrificans ASU-035: growth rate, enzymes activity, and cell surface properties. Rend Lincei 27:557–563

    Article  Google Scholar 

  • Monsalvo VM, Mohedano AF, Casas JA, Rodríguez JJ (2009) Cometabolic biodegradation of 4-chlorophenol by sequencing batch reactors at different temperatures. Bioresour Technol 100:4572–4578

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Andrade I, Valdez-Vazquez I, López-Rodríguez A (2020) Effect of transient pH variation on microbial activity and physical characteristics of aerobic granules treating 4-chlorophenol. J Environ Sci Health Part A 55:878–885

    Article  CAS  Google Scholar 

  • Nordin K, Unell M, Jansson JK (2005) Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl Environ Microbiol 71:6538–6544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak A, Mrozik A (2018) Degradation of 4-chlorophenol and microbial diversity in soil inoculated with single Pseudomonas sp. CF600 and Stenotrophomonas maltophilia KB2. J Environ Manage 215:216–229

    Article  CAS  PubMed  Google Scholar 

  • Olaniran AO, Igbinosa EO (2011) Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation pro-cesses. Chemosphere 83:1297–1306

    Article  CAS  PubMed  Google Scholar 

  • Pandit PR, Kumar R, Kumar D, Patel Z, Pandya L, Kumar M, Joshi C (2021) Deciphering the black box of microbial community of common effluent treatment plant through integrated metagenomics: tackling industrial effluent. J Environ Manage 289:112448

    Article  CAS  PubMed  Google Scholar 

  • Patel BP, Kumar A (2016) Multi-substrate biodegradation of chlorophenols by defined microbial consortium. 3 Biotech 6:1–10

    Article  Google Scholar 

  • Penttinen OP (1995) Chlorophenols in aquatic environments: structure-activity correlations. Finnish Zoological and Botanical Publishing Board, In Annales Zoologici Fennici, pp 287–294

    Google Scholar 

  • Roque F, Diaz K, Ancco M, Delgado D, Tejada K (2018) Biodepuration of domestic sewage, textile effluents and acid mine drainage using starch-based xerogel from recycled potato peels. Water Sci Technol 77:1250–1261

    Article  CAS  PubMed  Google Scholar 

  • Sandhibigraha S, Chakraborty S, Bandyopadhyay T, Bhunia B (2020) A kinetic study of 4-chlorophenol biodegradation by the novel isolated Bacillus subtilis in batch shake flask. Environ Eng Res 25:62–70

    Article  Google Scholar 

  • Saravanakumar K, Yun K, Maheskumar V, Yea Y, Jagan G, Park CM (2023) Construction of novel In 2S3/Ti3C2 MXene quantum dots/SmFeO3 Z-scheme heterojunctions for efficient photocatalytic removal of sulfamethoxazole and 4-chlorophenol: Degradation pathways and mechanism insights. Chem Eng J 451:138933

    Article  CAS  Google Scholar 

  • Shah V, Zakrzewski M, Wibberg D, Eikmeyer F, Schlüter A, Madamwar D (2013) Taxonomic profiling and metagenome analysis of a microbial community from a habitat contaminated with industrial discharges. Microb Ecol 66:533–550

    Article  PubMed  Google Scholar 

  • Silva AS, Camargo FADO, Andreazza R, Jacques RJS, Baldoni DB, Bento FM (2012) Enzymatic activity of catechol 1, 2-dioxygenase and catechol 2,3-dioxygenase produced by Gordonia polyisoprenivorans. Quim Nova 35:1587–1592

    Article  CAS  Google Scholar 

  • Swain G, Sonwani RK, Singh RS, Jaiswal RP, Rai BN (2021) Removal of 4-chlorophenol by Bacillus flexus as free and immobilized system: effect of process variables and kinetic study. Environ Technol Innov 21:101356

    Article  CAS  Google Scholar 

  • Tariq SR, Shafiq M, Chotana GA (2016) Distribution of heavy metals in the soils associated with the commonly used pesticides in cotton fields. Scientifica 2016:1–11

    Article  Google Scholar 

  • Wang J, Sun Z (2020a) Exploring the effects of carbon source level on the degradation of 2,4,6-trichlorophenol in the co-metabolism process. J Hazard Mater 392:122293

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Sun Z (2020b) Effects of different carbon sources on 2,4,6-trichlorophenol degradation in the activated sludge process. Bioprocess Biosyst Eng 43:2143–2152

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Sun Z (2021) Successful application of municipal domestic wastewater as a co-substrate in 2,4,6-trichlorophenol degradation. Chemosphere 280:130707

    Article  CAS  PubMed  Google Scholar 

  • Zada A, Khan M, Khan MA, Khan Q, Habibi-Yangjeh A, Dang A, Maqbool M (2021) Review on the hazardous applications and photodegradation mechanisms of chlorophenols over different photocatalysts. Environ Res 195:110742

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Li Y, Chen X, Li Y (2018) Effects of carbon sources on sludge performance and microbial community for 4-chlorophenol wastewater treatment in sequencing batch reactors. Bioresour Technol 255:22–28

    Article  CAS  PubMed  Google Scholar 

  • Ziagova M, Kyriakou G, Liakopoulou-Kyriakides M (2009) Co-metabolism of 2,4-dichlorophenol and 4-Cl-m-cresol in the presence of glucose as an easily assimilated carbon source by Staphylococcus xylosus. J Hazard Mater 163:383–439

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Biochemistry Department of North Eastern Hill University, India for providing an infrastructural facility for completing this study. Fellowship grant from Council of Scientific and Industrial Research (CSIR), Govt. of India to LK (19/06/2016(i)EU-V) is gratefully acknowledged.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AKS, LK, and NAS designed the study. LK performed the detailed experiments with help from JN. LKand WJL performed bioinformatic analysis. AKS and LK prepared the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Arvind Kumar Singh.

Ethics declarations

Competing interests

The authors declare that they have no conflicting interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 398 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kipgen, L., Singha, N.A., Lyngdoh, W.J. et al. Degradation and metagenomic analysis of 4-chlorophenol utilizing multiple metal tolerant bacterial consortium. World J Microbiol Biotechnol 40, 56 (2024). https://doi.org/10.1007/s11274-023-03855-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03855-2

Keywords

Navigation