Skip to main content
Log in

Whole genome sequencing and functional analysis of a novel biofilm-eradicating strain Nocardiopsis lucentensis EMB25

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

The process of biofilm formation is intricate and multifaceted, requiring the individual cells to secrete extracellular polymeric substances (EPS) that subsequently aggregate and adhere to various surfaces. The issue of biofilms is a significant concern for public health due to the increased resistance of microorganisms associated with biofilms to antimicrobial agents. The current study describes the whole genome and corresponding functions of a biofilm inhibiting and eradicating actinobacteria isolate identified as Nocardiopsis lucentensis EMB25. The N. lucentensis EMB25 has 6.5 Mbp genome with 71.62% GC content. The genome analysis by BLAST Ring Image Generator (BRIG) revealed it to be closely related to Nocardiopsis dassonvillei NOCA502F. Interestingly, based on orthologous functional groups reflected by average nucleotide identity (ANI) analysis, it was 81.48% similar to N. arvandica DSM4527. Also, it produces lanthipeptides and linear azole(in)e-containing peptides (LAPs) akin to N. arvandica. The secondary metabolite search revealed the presence of major gene clusters involved in terpene, ectoine, siderophores, Lanthipeptides, RiPP-like, and T1PKS biosynthesis. After 24 h of treatment, the cell-free extract effectively eradicates the pre-existing biofilm of P. aeruginosa PseA. Also, the isolated bacteria exhibited antibacterial activity against MRSA, Staphylococcus aureus and Bacillus subtilis bacteria. Overall, this finding offers valuable insights into the identification of BGCs, which contain enzymes that play a role in the biosynthesis of natural products. Specifically, it sheds light on the functional aspects of these BGCs in relation to N. lucentensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The bacterial genome of N. lucentensis EMB25 has been submitted to NCBI database with accession number: JAMTDN000000000, Bioproject: PRJNA729595 and Biosample: SAMN19135856.

References

  • Ali R, El-Boubbou K, Boudjelal M (2021) An easy, fast and inexpensive method of preparing a biological specimen for scanning electron microscopy (SEM). Methods X 8:101521

    CAS  Google Scholar 

  • Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramanian S, Othman EM, Kampik D, Stopper H, Hentschel U, Ziebuhr W, Oelschlaeger TA, Abdelmohsen UR (2017) Marine Sponge-Derived Streptomyces sp. SBT343 extract inhibits staphylococcal biofilm formation. Front Microbiol 8

  • Bauman KD, Butler KS, Moore BS, Chekan JR (2021) Genome mining methods to discover bioactive natural products. Nat Prod Reps 38:2100–2129

    Article  CAS  Google Scholar 

  • Bennur T, Ravi Kumar A, Zinjarde SS, Javdekar V (2015) Nocardiopsis species: incidence, ecological roles and adaptations. Microbiol Res 174:33–47

    Article  PubMed  Google Scholar 

  • Bennur T, Ravi Kumar A, Zinjarde SS, Javdekar V (2016) Nocardiopsis species: a potential source of bioactive compounds. J Appl Microbiol 120:1–16

    Article  CAS  PubMed  Google Scholar 

  • Billings N, Birjiniuk A, Samad TS, Doyle PS, Ribbeck K (2015) Material properties of biofilms—a review of methods for understanding permeability and mechanics. Rep Prog Phys 78:036601

    Article  PubMed  PubMed Central  Google Scholar 

  • Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, Fetter A, Terlouw BR, Metcalf WW, Helfrich EJ, van Wezel GP (2023) antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 4:gkad344

    Google Scholar 

  • Bothwell IR, Caetano T, Sarksian R, Mendo S, van der Donk WA (2021) Structural analysis of Class I Lanthipeptides from Pedobacter lusitanus NL19 reveals an unusual Ring Pattern. ACS Chem Biol 16:1019–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Xu L, Zhou Y, Han B (2021) Natural Products from Actinomycetes Associated with Marine Organisms. Mar Drugs 19:629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho JY, Williams PG, Kwon HC, Jensen PR, Fenical W (2007) Lucentamycins A-D, cytotoxic peptides from the marine-derived actinomycete Nocardiopsis lucentensis. J Nat Prod 70:1321–1328

    Article  CAS  PubMed  Google Scholar 

  • Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Investig 112:1466–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Simeis D, Serra S (2021) Actinomycetes: a never-ending source of bioactive compounds—An overview on antibiotics production. Antibiotics 10:483

    Article  PubMed  PubMed Central  Google Scholar 

  • Eliwa EM, Abdel-Razek AS, Frese M, Wibberg D, Halawa AH, El-Agrody AM, Bedair AH, Kalinowski J, Sewald N, Shaaban M (2017) New bioactive compounds from the marine-derived actinomycete Nocardiopsis lucentensis sp. ASMR2. Z Naturforsch B 72:351–360

    Article  CAS  Google Scholar 

  • Fu P, Liu P, Qu H, Wang Y, Chen D, Wang H, Li J, Zhu W (2011) Α-pyrones and diketopiperazine derivatives from the marine-derived actinomycete Nocardiopsis dassonvillei HR10-5. J Nat Prod 74:2219–2223

    Article  CAS  PubMed  Google Scholar 

  • Goel N, Singh R, Sood S, Khare SK (2022) Investigation of Streptomyces sp. Strain EMB24 secondary Metabolite Profile has unraveled its extraordinary antibacterial potency against drug-resistant Bacteria. Mar Biotechnol 24:1168–1175

    Article  CAS  Google Scholar 

  • Goel N, Ghosh M, Jain D, Sinha R, Khare SK (2023) Inhibition and eradication of Pseudomonas aeruginosa biofilms by secondary metabolites of Nocardiopsis lucentensis EMB25. RSC Med Chem 14:745–756

    Article  CAS  PubMed  Google Scholar 

  • Hadj Rabia-Boukhalfa Y, Eveno Y, Karama S, Selama O, Lauga B, Duran R, Hacène H, Eparvier V (2017) Isolation, purification and chemical characterization of a new angucyclinone compound produced by a new halotolerant Nocardiopsis sp. HR-4 strain. World J Microbiol Biotechnol 33:126

    Article  PubMed  Google Scholar 

  • Hamed A, Abdel-Razek AS, Frese M, Stammler HG, El-Haddad AF, Ibrahim TMA, Sewald N, Shaaban M (2018) Terretonin N: a New Meroterpenoid from Nocardiopsis sp. Molecules 23(2):299

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibrahim AH, Desoukey SY, Fouad MA, Kamel MS, Gulder TAM, Abdelmohsen UR (2018) Natural product potential of the Genus Nocardiopsis. Mar Drugs 16:147

    Article  PubMed  PubMed Central  Google Scholar 

  • Jonsbu E, McIntyre M, Nielsen J (2002) The influence of carbon sources and morphology on nystatin production by Streptomyces noursei. J Biotechnol 95:133–144

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M (2000) KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MC, Kwon OW, Park JS, Kim SY, Kwon HC (2013) Nocapyrones H-J, 3,6-disubstituted α-pyrones from the marine actinomycete Nocardiopsis sp. KMF-001. Chem Pharm Bull 61:511–515

    Article  CAS  Google Scholar 

  • Lahiri D, Dash S, Dutta R, Nag M (2019) Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. J Biosci 44:52

    Article  PubMed  Google Scholar 

  • Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Li YQ, Li MG, Li W, Zhao JY, Ding ZG, Cui XL, Wen M (2007) Griseusin D, a new pyranonaphthoquinone derivative from a alkaphilic Nocardiopsis sp. J Antibiot 60:757–761

    Article  CAS  Google Scholar 

  • Martínez B, Böttiger T, Schneider T, Rodríguez A, Sahl HG, Wiedemann I (2008) Specific Interaction of the unmodified bacteriocin lactococcin 972 with the Cell Wall Precursor lipid II. Appl Environ Microbiol 74:4666–4670

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortlieb N, Klenk E, Kulik A, Niedermeyer THJ (2021) Development of an agar-plug cultivation system for bioactivity assays of actinomycete strain collections. PLoS ONE 16:e0258934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206–214

    Article  CAS  PubMed  Google Scholar 

  • Russell AH, Vior NM, Hems ES, Lacret R, Truman AW (2021) Discovery and characterisation of an amidine-containing ribosomally-synthesised peptide that is widely distributed in nature. Chem Sci 12:11769–11778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvador M, Argandoña M, Naranjo E, Piubeli F, Nieto JJ, Csonka LN, Vargas C (2018) Quantitative RNA-seq analysis unveils osmotic and thermal adaptation mechanisms relevant for Ectoine Production in Chromohalobacter salexigens. Front Microbiol 9:1845

    Article  PubMed  PubMed Central  Google Scholar 

  • Samrot AV, Abubakar Mohamed A, Faradjeva E, Si Jie L, Hooi Sze C, Arif A, Chuan Sean T, Norbert Michael E, Yeok Mun C, Xiao Qi N, Ling Mok P, Kumar SS (2021) Mechanisms and impact of Biofilms and Targeting of Biofilms using Bioactive Compounds-A Review. Med (Kaunas Lithuania) 57:839

    Google Scholar 

  • Schneemann I, Ohlendorf B, Zinecker H, Nagel K, Wiese J, Imhoff JF (2010) Nocapyrones A-D, gamma-pyrones from a Nocardiopsis strain isolated from the marine sponge Halichondria panicea. J Nat Prod 73:1444–1447

    Article  CAS  PubMed  Google Scholar 

  • Seemann T (2014) Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Misba L, Khan AU (2019) Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control 8:1–10

    Article  Google Scholar 

  • Shi T, Wang YF, Wang H, Wang B (2022) Genus Nocardiopsis: a prolific producer of Natural Products. Mar Drugs 20:374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi A, Hotta K, Saito N, Morioka M, Okami Y, Umezawa H (1986) Production of novel antibiotic, dopsisamine, by a new subspecies of Nocardiopsis mutabilis with multiple antibiotic resistance. J Antibiot 39:175–183

    Article  CAS  Google Scholar 

  • Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP (2018) BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 46:W278–W281

    Article  PubMed  PubMed Central  Google Scholar 

  • Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol 13:e1005595

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu ZC, Li S, Nam SJ, Liu Z, Zhang C (2013) Nocardiamides A and B, two cyclohexapeptides from the marine-derived actinomycete Nocardiopsis sp. CNX037. J Nat Prod 76:694–701

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Zhao B, Wang L, Liao L, Song L, Wang X, Liu G (2017) Complete genome of Nocardiopsis dassonvillei strain NOCA502F isolated from sediment of the Arctic Ocean. Mar Genom 34:27–29

    Article  Google Scholar 

Download references

Acknowledgements

The first author (NG) would like to acknowledge the financial assistance provided by the Ministry of Human Resource Development (MHRD), Govt. of India, and IIT Delhi. SZ is grateful to CSIR for providing the Senior research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Nikky Goel: Conceptualization, Methodology, Formal analysis, writing original draft; Saniya Zaidi: Methodology, Formal analysis, writing; Sunil K. Khare: Conceptualization, Formal analysis, Supervision, Review MS.

Corresponding author

Correspondence to Sunil Kumar Khare.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, N., Zaidi, S. & Khare, S.K. Whole genome sequencing and functional analysis of a novel biofilm-eradicating strain Nocardiopsis lucentensis EMB25. World J Microbiol Biotechnol 39, 292 (2023). https://doi.org/10.1007/s11274-023-03738-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03738-6

Keywords

Navigation