Skip to main content
Log in

Streptomyces can be an excellent plant growth manager

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Streptomyces, the most abundant and arguably the most important genus of actinomycetes, is an important source of biologically active compounds such as antibiotics, and extracellular hydrolytic enzymes. Since Streptomyces can have a beneficial symbiotic relationship with plants they can contribute to nutrition, health and fitness of the latter. This review article summarizes recent research contributions on the ability of Streptomyces to promote plant growth and improve plant tolerance to biotic and abiotic stress responses, as well as on the consequences, on plant health, of the enrichment of rhizospheric soils in Streptomyces species. This review summarizes the most recent reports of the contribution of Streptomyces to plant growth, health and fitness and suggests future research directions to promote the use of these bacteria for the development of a cleaner agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abo-Zaid GA, Matar SM, Abdelkhalek A (2020) Induction of plant resistance against tobacco mosaic virus using the biocontrol agent Streptomyces cellulosae isolate Actino 48. Agronomy 10:1620

    Article  CAS  Google Scholar 

  • Ahsan MT, Najam-ul-Haq M, Idrees M, Ullah I, Afzal M (2017) Bacterial endophytes enhance phytostabilization in soils contaminated with uranium and lead. Int J Phytorem 19:937–946

    Article  CAS  Google Scholar 

  • Akbari A, Gharanjik S, Koobaz P, Sadeghi A (2020) Plant growth promoting Streptomyces strains are selectively interacting with the wheat cultivars especially in saline conditions. Heliyon 6:e03675

    Article  PubMed  PubMed Central  Google Scholar 

  • AL-Huqail A, El-Bondkly A (2021) Improvement of Zea mays L. growth parameters under chromium and arsenic stress by the heavy metal-resistant Streptomyces sp. NRC21696. Int J Environ Sci Technol 19:5301–5322

    Article  CAS  Google Scholar 

  • Ali A, Guo D, Li Y, Shaheen SM, Wahid F, Antoniadis V, Abdelrahman H, Al-Solaimani SG, Li R, Tsang DC (2021) Streptomyces pactum addition to contaminated mining soils improved soil quality and enhanced metals phytoextraction by wheat in a green remediation trial. Chemosphere 273:129692

    Article  CAS  PubMed  Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971

    Article  PubMed  PubMed Central  Google Scholar 

  • Amelia-Yap ZH, Azman AS, AbuBakar S, Low VL (2022) Streptomyces derivatives as an insecticide: current perspectives, challenges and future research needs for mosquito control. Acta Trop 229:106381

    Article  CAS  PubMed  Google Scholar 

  • Ankati S, Srinivas V, Pratyusha S, Gopalakrishnan S (2021) Streptomyces consortia-mediated plant defense against Fusarium wilt and plant growth-promotion in chickpea. Microb Pathog 157:104961

    Article  CAS  PubMed  Google Scholar 

  • Ansari WA, Krishna R, Zeyad MT, Singh S, Yadav A (2020) Endophytic actinomycetes-mediated modulation of defense and systemic resistance confers host plant fitness under biotic stress conditions. In: Singh R, Manchanda G, Maurya I, Wei Y (eds) Microbial versatility in varied environments. Springer, Singapore

    Google Scholar 

  • Arraes FBM, Beneventi MA, Lisei de Sa ME, Paixao JFR, Albuquerque EVS, Marin SRR, Purgatto E, Nepomuceno AL, Grossi-de-Sa MF (2015) Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC Plant Biol 15:213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Baoune H, Aparicio JD, Pucci G, Ould El Hadj-Khelil A, Polti MA (2019) Bioremediation of petroleum-contaminated soils using Streptomyces sp. Hlh1. J Soils Sediments 19:2222–2230

    Article  CAS  Google Scholar 

  • Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, Clément C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80:1–43

    Article  PubMed  Google Scholar 

  • Basu A, Prasad P, Das SN, Kalam S, Sayyed R, Reddy M, El Enshasy H (2021) Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability 13:1140

    Article  CAS  Google Scholar 

  • Becher PG, Verschut V, Bibb MJ, Bush MJ, Molnár BP, Barane E, Al-Bassam MM, Chandra G, Song L, Challis GL (2020) Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nat Microbiol 5:821–829

    Article  CAS  PubMed  Google Scholar 

  • Behera HT, Mojumdar A, Ray L (2022) Biology, genetic aspects and oxidative stress response of actinobacteria and strategies for bioremediation of toxic metals. In: S Das, HR Dash (eds) Microbial Biodegradation and Bioremediation (Second Edition). Elsevier

  • Bhanse P, Kumar M, Singh L, Awasthi MK, Qureshi A (2022) Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: opportunities, challenges, and prospects. Chemosphere 303:134954

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Bown L, Li Y, Berrué F, Verhoeven JT, Dufour SC, Bignell DR (2017) Coronafacoyl phytotoxin biosynthesis and evolution in the common scab pathogen Streptomyces scabiei. Appl Environ Microbiol 83:e01169-e1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briceño G, Fuentes MS, Saez JM, Diez MC, Benimeli CS (2018) Streptomyces genus as biotechnological tool for pesticide degradation in polluted systems. Crit Rev Environ Sci Technol 48:773–805

    Article  CAS  Google Scholar 

  • Canarini A, Kaiser C, Merchant A, Richter A, Wanek W (2019) Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci 10:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Carroll CS, Moore MM (2018) Ironing out siderophore biosynthesis: a review of non-ribosomal peptide synthetase (NRPS)-independent siderophore synthetases. Crit Rev Biochem Mol Biol 53:356–381

    Article  CAS  PubMed  Google Scholar 

  • Castro JF, Razmilic V, Gomez-Escribano JP, Andrews B, Asenjo J, Bibb M (2018) The ‘gifted’ actinomycete Streptomyces leeuwenhoekii. Antonie Van Leeuwenhoek 111:1433–1448

    Article  PubMed  Google Scholar 

  • Chen Q, Bai S, Zhang T, Duan C, Zhao J, Xue Q, Li Y (2021) Effects of seed-coating preparations of living Streptomyces globisporus on plant growth promotion and disease control against Verticillium wilt in cotton. Sustainability 13:6001

    Article  CAS  Google Scholar 

  • Cheng Z, Bown L, Piercey B, Bignell DR (2019) Positive and negative regulation of the virulence-associated coronafacoyl phytotoxin in the potato common scab pathogen Streptomyces scabies. Mol Plant-Microbe Interact 32:1348–1359

    Article  CAS  PubMed  Google Scholar 

  • Chukwuneme CF, Babalola OO, Kutu FR, Ojuederie OB (2020) Characterization of actinomycetes isolates for plant growth promoting traits and their effects on drought tolerance in maize. J Plant Interact 15:93–105

    Article  CAS  Google Scholar 

  • da-Silva JR, Alexandre A, Brígido C, Oliveira S (2017) Can stress response genes be used to improve the symbiotic performance of rhizobia? AIMS Microbiol 3:365–382

    Article  PubMed  CAS  Google Scholar 

  • Dahal B, NandaKafle G, Perkins L, Brözel VS (2017) Diversity of free-living nitrogen fixing Streptomyces in soils of the badlands of South Dakota. Microbiol Res 195:31–39

    Article  CAS  PubMed  Google Scholar 

  • Deflandre B, Stulanovic N, Planckaert S, Anderssen S, Bonometti B, Karim L, Coppieters W, Devreese B, Rigali S (2022) The virulome of Streptomyces scabiei in response to cello-oligosaccharide elicitors. Microbial Genomics 8:000760

    Article  CAS  PubMed Central  Google Scholar 

  • Devi S, Sharma M, kumari Manhas R (2021) Investigating the plant growth promoting and biocontrol potentiality of endophytic Streptomyces sp. SP5 against early blight in tomato seedling. Research Square: PPR356488

  • Devine KM (2018) Activation of the PhoPR-mediated response to phosphate limitation is regulated by wall teichoic acid metabolism in Bacillus subtilis. Front Microbiol 9:2678

    Article  PubMed  PubMed Central  Google Scholar 

  • Etesami H, Emami S, Alikhani HA (2017) Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects - a review. J Soil Sci Plant Nut 17:897–911

    Article  CAS  Google Scholar 

  • Gao Y, Han Y, Li X, Li M, Wang C, Li Z, Wang Y, Wang W (2022) A salt-tolerant Streptomyces paradoxus D2–8 from rhizosphere soil of Phragmites communis augments soybean tolerance to soda saline-alkali stress. Pol J Microbiol 71:43–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Gong Y, Chen L-J, Pan S-Y, Li X-W, Xu M-J, Zhang C-M, Xing K, Qin S (2020) Antifungal potential evaluation and alleviation of salt stress in tomato seedlings by a halotolerant plant growth-promoting actinomycete Streptomyces sp. KLBMP5084. Rhizosphere 16

  • Gopalakrishnan S, Srinivas V, Naresh N, Pratyusha S, Ankati S, Madhuprakash J, Govindaraj M, Sharma R (2021) Deciphering the antagonistic effect of Streptomyces spp and host-plant resistance induction against charcoal rot of sorghum. Planta 253:57

    Article  CAS  PubMed  Google Scholar 

  • Goudjal Y, Zamoum M, Meklat A, Sabaou N, Mathieu F, Zitouni A (2016) Plant-growth-promoting potential of endosymbiotic actinobacteria isolated from sand truffles (Terfezia leonis Tul.) of the Algerian Sahara. Ann Microbiol 66:91–100

    Article  CAS  Google Scholar 

  • Großkinsky DK, Tafner R, Moreno MV, Stenglein SA, García de Salamone IE, Nelson LM, Novák O, Strnad M, van der Graaff E, Roitsch T (2016) Cytokinin production by Pseudomonas fluorescens G20–18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci Rep 6:23310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo D, Ren C, Ali A, Du J, Zhang Z, Li R, Zhang Z (2019) Streptomyces pactum and sulfur mediated the antioxidant enzymes in plant and phytoextraction of potentially toxic elements from a smelter-contaminated soils. Environ Pollut 251:37–44

    Article  CAS  PubMed  Google Scholar 

  • Hamdali H, Lebrihi A, Monje MC, Benharref A, Hafidi M, Ouhdouch Y, Virolle MJ (2021) A molecule of the viridomycin family originating from a Streptomyces griseus-related strain has the ability to solubilize rock phosphate and to inhibit microbial growth. Antibiotics 10:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han D, Yan D, Wang Q, Fang W, Wang X, Li J, Wang D, Li Y, Ouyang C, Cao A (2018) Effects of soil type, temperature, moisture, application dose, fertilizer, and organic amendments on chemical properties and biodegradation of dimethyl disulfide in soil. Land Degrad Dev 29:4282–4290

    Article  Google Scholar 

  • Han X, Wang J, Liu L, Shen F, Meng Q, Li X, Li Y, Liu D (2021) Identification and predictions regarding the biosynthesis pathway of polyene macrolides produced by Streptomyces roseoflavus Men-myco-93-63. Appl Environ Microbiol 87:e03157-e3120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassanisaadi M, Shahidi Bonjar GH, Hosseinipour A, Abdolshahi R, Ait Barka E, Saadoun I (2021) Biological control of Pythium aphanidermatum, the causal agent of tomato root rot by two Streptomyces root symbionts. Agronomy 11:846

    Article  CAS  Google Scholar 

  • Ha-Tran DM, Nguyen TTM, Hung S-H, Huang E, Huang C-C (2021) Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: a review. Int J Mol Sci 22:3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hata EM, Yusof MT, Zulperi D (2021) Induction of systemic resistance against bacterial leaf streak disease and growth promotion in rice plant by Streptomyces shenzhenesis TKSC3 and Streptomyces sp. SS8. Plant Pathol J 37:173–181

    Article  PubMed  PubMed Central  Google Scholar 

  • Hesse E, O’Brien S, Tromas N, Bayer F, Luján AM, van Veen EM, Hodgson DJ, Buckling A (2018) Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination. Ecol Lett 21:117–127

    Article  PubMed  Google Scholar 

  • Horstmann JL, Dias MP, Ortolan F, Medina-Silva R, Astarita LV, Santarém ER (2020) Streptomyces sp. CLV45 from Fabaceae rhizosphere benefits growth of soybean plants. Braz J Microbiol 51:1861–1871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail S, Jiang B, Nasimi Z, Inam-ul-Haq M, Yamamoto N, Danso Ofori A, Khan N, Arshad M, Abbas K, Zheng A (2020) Investigation of Streptomyces scabies causing potato scab by various detection techniques, its pathogenicity and determination of host-disease resistance in potato germplasm. Pathogens 9:760

    Article  CAS  PubMed Central  Google Scholar 

  • Jones SE, Elliot MA (2017) Streptomyces exploration: competition, volatile communication and new bacterial behaviours. Trends Microbiol 25:522–531

    Article  CAS  PubMed  Google Scholar 

  • Junpradit C, Thooppeng P, Duangmal K, Prapagdee B (2021) Influence of cadmium-resistant Streptomycetes on plant growth and cadmium uptake by Chlorophytum comosum (Thunb.) Jacques. Environ Sci Pollut R 28:39398–39408

    Article  CAS  Google Scholar 

  • Kalkreuter E, Pan G, Cepeda AJ, Shen B (2020) Targeting bacterial genomes for natural product discovery. Trends Pharmacol Sci 41:13–26

    Article  CAS  PubMed  Google Scholar 

  • Kamaei R, Faramarzi F, Parsa M, Jahan M (2019) The effects of biological, chemical, and organic fertilizers application on root growth features and grain yield of Sorghum. J Plant Nutr 42:2221–2233

    Article  CAS  Google Scholar 

  • Kaur T, Rani R, Manhas RK (2019) Biocontrol and plant growth promoting potential of phylogenetically new Streptomyces sp. MR14 of rhizospheric origin. AMB Express 9:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan A, Singh P, Srivastava A (2018) Synthesis, nature and utility of universal iron chelator—Siderophore: a review. Microbiol Res 212:103–111

    Article  PubMed  CAS  Google Scholar 

  • Korenblum E, Massalha H, Aharoni A (2022) Plant–microbe interactions in the rhizosphere via a circular metabolic economy. Plant Cell 163

  • Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V, Dhaliwal HS, Saxena AK (2020) Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal Agric Biotechnol 23:101–501

    Google Scholar 

  • Kudoyarova G, Arkhipova T, Korshunova T, Bakaeva M, Loginov O, Dodd IC (2019) Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses. Front Plant Sci 10:1368

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Verma JP (2018) Does plant-microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52

    Article  CAS  PubMed  Google Scholar 

  • Lapaz MI, López A, Huguet-Tapia JC, Pérez-Baldassari MF, Iglesias C, Loria R, Moyna G, Pianzzola MJ (2019) Isolation and structural characterization of a non-diketopiperazine phytotoxin from a potato pathogenic Streptomyces strain. Nat Prod Res 33:2951–2957

    Article  CAS  PubMed  Google Scholar 

  • Law JW-F, Tan K-X, Wong SH, Ab Mutalib N-S, Lee L-H (2018) Taxonomic and characterization methods of Streptomyces: a review. Prog Microbes Mol Biol 1:a0000009

    Article  Google Scholar 

  • Li H, Guo Q, Jing Y, Liu Z, Zheng Z, Sun Y, Xue Q, Lai H (2020) Application of Streptomyces pactum Act12 enhances drought resistance in wheat. J Plant Growth Regul 39:122–132

    Article  CAS  Google Scholar 

  • Ling L, Han X, Li X, Zhang X, Wang H, Zhang L, Cao P, Wu Y, Wang X, Zhao J (2020) A Streptomyces sp. NEAU-HV9: Isolation, identification, and potential as a biocontrol agent against Ralstonia solanacearum of tomato plants. Microorganisms 8:351

    Article  CAS  PubMed Central  Google Scholar 

  • Liotti RG, da Silva Figueiredo MI, Soares MA (2019) Streptomyces griseocarneus R132 controls phytopathogens and promotes growth of pepper (Capsicum annuum). Biol Control 138:104065

    Article  CAS  Google Scholar 

  • Liu H, Brettell LE (2019) Plant defense by VOC-induced microbial priming. Trends Plant Sci 24:187–189

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Yan R, Fu Y, Wang X, Zhang J, Xiang W (2019) Antifungal, plant growth-promoting, and genomic properties of an endophytic actinobacterium Streptomyces sp. NEAU-S7GS2. Front Microbiol 10:2077

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv C, Gu T, Ma R, Yao W, Huang Y, Gu J, Zhao G (2021) Biochemical characterization of a GH19 chitinase from Streptomyces alfalfae and its applications in crystalline chitin conversion and biocontrol. Int J Biol Macromol 167:193–201

    Article  CAS  PubMed  Google Scholar 

  • MacKellar D, Lieber L, Norman JS, Bolger A, Tobin C, Murray JW, Oksaksin M, Chang RL, Ford TJ, Nguyen PQ (2016) Streptomyces thermoautotrophicus does not fix nitrogen. Sci Rep 6:1–12

    Article  CAS  Google Scholar 

  • Massoud MB, Sakouhi L, Karmous I, Zhu Y, El Ferjani E, Sheehan D, Chaoui A (2018) Protective role of exogenous phytohormones on redox status in pea seedlings under copper stress. J Plant Physiol 221:51–61

    Article  PubMed  CAS  Google Scholar 

  • Maurer D, Malique F, Alfarraj S, Albasher G, Horn MA, Butterbach-Bahl K, Dannenmann M, Rennenberg H (2021) Interactive regulation of root exudation and rhizosphere denitrification by plant metabolite content and soil properties. Plant Soil 467:107–127

    Article  CAS  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Meschke H, Schrempf H (2010) Streptomyces lividans inhibits the proliferation of the fungus Verticillium dahliae on seeds and roots of Arabidopsis thaliana. Microb Biotechnol 3:428–443

    Article  PubMed  PubMed Central  Google Scholar 

  • Mora-Romero GA, Félix-Gastélum R, Bomberger RA, Romero-Urías C, Tanaka K (2022) Common potato disease symptoms: ambiguity of symptom-based identification of causal pathogens and value of on-site molecular diagnostics. J Gen Plant Pathol 88:89–104

    Article  CAS  Google Scholar 

  • Niu S, Gao Y, Zi H, Liu Y, Liu X, Xiong X, Yao Q, Qin Z, Chen N, Guo L (2022a) The osmolyte-producing endophyte Streptomyces albidoflavus OsiLf-2 induces drought and salt tolerance in rice via a multi-level mechanism. Crop J 10:375–386

    Article  Google Scholar 

  • Niu Z, Yue Y, Su D, Ma S, Hu L, Hou X, Zhang T, Dong D, Zhang D, Lu C (2022b) The characterization of Streptomyces alfalfae strain 11F and its effect on seed germination and growth promotion in switchgrass. Biomass Bioenerg 158:106360

    Article  CAS  Google Scholar 

  • Nozari RM, Ortolan F, Astarita LV, Santarém ER (2021) Streptomyces spp. enhance vegetative growth of maize plants under saline stress. Braz J Microbiol 52:1371–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Khan A, Ahmed A-H (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32

    Article  CAS  PubMed  Google Scholar 

  • Ochi K (2017) Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot 70:25–40

    Article  CAS  Google Scholar 

  • Olanrewaju OS, Babalola OO (2019) Streptomyces: implications and interactions in plant growth promotion. Appl Microbiol Biot 103:1179–1188

    Article  CAS  Google Scholar 

  • Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO (2019) Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biot 103:1155–1166

    Article  CAS  Google Scholar 

  • Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J (2020) Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review. Sci Total Environ 743:140682

    Article  PubMed  CAS  Google Scholar 

  • Pan G, Xu Z, Guo Z, Hindra MM, Yang D, Zhou H, Gansemans Y, Zhu X, Huang Y (2017) Discovery of the leinamycin family of natural products by mining actinobacterial genomes. Proc Natl Acad Sci USA 114:E11131–E11140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panneerselvam P, Selvakumar G, Ganeshamurthy A, Mitra D, Senapati A (2021) Enhancing pomegranate (Punica granatum L.) plant health through the intervention of a Streptomyces consortium. Biocontrol Sci Technol 31:430–442

    Article  Google Scholar 

  • Park S-H, Elhiti M, Wang H, Xu A, Brown D, Wang A (2017) Adventitious root formation of in vitro peach shoots is regulated by auxin and ethylene. Sci Hortic 226:250–260

    Article  CAS  Google Scholar 

  • Patten CL, Blakney AJ, Coulson TJ (2013) Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol 39:395–415

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Ma J, Wei X, Zhang C, Jia N, Wang X, Wang ET, Hu D, Wang Z (2021) Accumulation of beneficial bacteria in the rhizosphere of maize (Zea mays L.) grown in a saline soil in responding to a consortium of plant growth promoting rhizobacteria. Ann Microbiol 71:1–12

    Article  CAS  Google Scholar 

  • Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, Walker JR, Kim E, Cho HJ, Reynolds JM, Song MC (2019) A review of the microbial production of bioactive natural products and biologics. Front Microbiol 10:1404

    Article  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Pramanik K, Mandal S, Banerjee S, Ghosh A, Maiti TK, Mandal NC (2021) Unraveling the heavy metal resistance and biocontrol potential of Pseudomonas sp. K32 strain facilitating rice seedling growth under Cd stress. Chemosphere 274

  • Quinn GA, Banat AM, Abdelhameed AM, Banat IM (2020) Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery. J Med Microbiol 69:1040–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren H, Shi C, Zhao H (2020) Computational tools for discovering and engineering natural product biosynthetic pathways. iScience 23:100795

    Article  PubMed  Google Scholar 

  • Ribbe M, Gadkari D, Meyer O (1997) N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-Dinitrogenase and a manganese-Superoxide oxidoreductase that couple N2Reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase. J Biol Chem 272:26627–26633

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues EP, Soares CdP, Galvão PG, Imada EL, Simões-Araújo JL, Rouws LF, Oliveira ALd, Vidal MS, Baldani JI (2016) Identification of genes involved in indole-3-acetic acid biosynthesis by Gluconacetobacter diazotrophicus PAL5 strain using transposon mutagenesis. Front Microbiol 7:1572

    PubMed  PubMed Central  Google Scholar 

  • Romero-Rodríguez A, Maldonado-Carmona N, Ruiz-Villafán B, Koirala N, Rocha D, Sánchez S (2018) Interplay between carbon, nitrogen and phosphate utilization in the control of secondary metabolite production in Streptomyces. Antonie Van Leeuwenhoek 111:761–781

    Article  PubMed  CAS  Google Scholar 

  • Sadiq Y, Zaid A, Khan MMA (2020) Adaptive Physiological Responses of Plants under Abiotic Stresses: Role of Phytohormones. In: M Hasanuzzaman (ed) Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I: general consequences and plant responses. Springer, Singapore

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut R 23:3984–3999

    Article  CAS  Google Scholar 

  • Samaras A, Roumeliotis E, Ntasiou P, Karaoglanidis G (2021) Bacillus subtilis MBI600 promotes growth of tomato plants and induces systemic resistance contributing to the control of soilborne pathogens. Plants 10:1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sari M, Nawangsih AA, Wahyudi AT (2021) Rhizosphere Streptomyces formulas as the biological control agent of phytopathogenic fungi Fusarium oxysporum and plant growth promoter of soybean. Biodiversitas J Biol Divers 22:3015–3023

    Google Scholar 

  • Sathya A, Vijayabharathi R, Gopalakrishnan S (2017) Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3. Biotech 7:102

    Google Scholar 

  • Schrempf H (2001) Recognition and degradation of chitin by streptomycetes. Antonie Van Leeuwenhoek 79:285–289

    Article  CAS  PubMed  Google Scholar 

  • Schrempf H (2017) Elucidating biochemical features and biological roles of Streptomyces proteins recognizing crystalline chitin-and cellulose-types and their soluble derivatives. Carbohyd Res 448:220–226

    Article  CAS  Google Scholar 

  • Schulz-Bohm K, Martín-Sánchez L, Garbeva P (2017) Microbial volatiles: small molecules with an important role in intra-and inter-kingdom interactions. Front Microbiol 8:2484

    Article  PubMed  PubMed Central  Google Scholar 

  • Siemieniewicz KW, Schrempf H (2007) Concerted responses between the chitin-binding protein secreting Streptomyces olivaceoviridis and Aspergillus proliferans. Microbiology 153:593–600

    Article  CAS  PubMed  Google Scholar 

  • Solá MZS, Prado C, Rosa M, Aráoz MVC, Benimeli CS, Polti MA, Alvarez A (2021) Assessment of the Streptomyces-plant system to mitigate the impact of Cr (VI) and lindane in experimental soils. Environ Sci Pollut R 28:51217–51231

    Article  CAS  Google Scholar 

  • Som S, Willett DS, Alborn HT (2017) Dynamics of belowground volatile diffusion and degradation. Rhizosphere 4:70–74

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Suárez-Moreno ZR, Vinchira-Villarraga DM, Vergara-Morales DI, Castellanos L, Ramos FA, Guarnaccia C, Degrassi G, Venturi V, Moreno-Sarmiento N (2019) Plant-growth promotion and biocontrol properties of three Streptomyces spp. isolates to control bacterial rice pathogens. Front Microbiol 10:290

    Article  PubMed  PubMed Central  Google Scholar 

  • Taha M, Ghaly M, Atwa H, Askoura M (2021) Evaluation of the effectiveness of soil Streptomyces isolates for induction of plant resistance against Tomato mosaic virus (ToMV). Curr Microbiol 78:3032–3043

    Article  CAS  PubMed  Google Scholar 

  • Terra L, Ratcliffe N, Castro HC, Vicente AC, Dyson P (2021) Biotechnological potential of streptomyces siderophores as new antibiotics. Curr Med Chem 28:1407–1421

    Article  CAS  PubMed  Google Scholar 

  • Tilocca B, Cao A, Migheli Q (2020) Scent of a killer: microbial volatilome and its role in the biological control of plant pathogens. Front Microbiol 11:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Tolba S, Ibrahim M, Amer EA, Ahmed DA (2019) First insights into salt tolerance improvement of Stevia by plant growth-promoting Streptomyces species. Arch Microbiol 201:1295–1306

    Article  CAS  PubMed  Google Scholar 

  • Tonelli ML, Figueredo MS, Rodríguez J, Fabra A, Ibañez F (2020) Induced systemic resistance-like responses elicited by rhizobia. Plant Soil 448:1–14

    Article  CAS  Google Scholar 

  • Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK (2020) Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol 18:607–621

    Article  CAS  PubMed  Google Scholar 

  • Vaid N, Sudan J, Dave S, Mangla H, Pathak H (2022) Insight into microbes and plants ability for bioremediation of heavy metals. Curr Microbiol 79:141

    Article  CAS  PubMed  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules 21:573

    Article  PubMed Central  CAS  Google Scholar 

  • Verbon EH, Liberman LM (2016) Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci 21:218–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayabharathi R, Sathya A, Gopalakrishnan S (2015) Plant growth-promoting microbes from herbal vermicompost. In: D Egamberdieva, S Shrivastava, A Varma (eds) Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer, Cham

  • Vurukonda SSKP, Giovanardi D, Stefani E (2018) Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci 19:952

    Article  PubMed Central  CAS  Google Scholar 

  • Wang Z, Pang F, Gu C, Wang L, Xing Y, Yang L, Li Y (2017a) Establishment and optimization of Streptomyces chartreusi WZS021 transconjugation system. J South Agric 48:581–586

    CAS  Google Scholar 

  • Wang Z, Solanki MK, Pang F, Singh RK, Yang L-T, Li Y-R, Li H-B, Zhu K, Xing Y-X (2017b) Identification and efficiency of a nitrogen-fixing endophytic actinobacterial strain from sugarcane. Sugar Tech 19:492–500

    Article  CAS  Google Scholar 

  • Wang Z, Solanki MK, Yu Z-X, Yang L-T, An Q-L, Dong D-F, Li Y-R (2019) Draft genome analysis offers insights into the mechanism by which Streptomyces chartreusis WZS021 increases drought tolerance in sugarcane. Front Microbiol 9:3262

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Yu ZX, Solanki M, Yang LT, Xing YX, Dong DF, Li YR (2020) Diversity of sugarcane root-associated endophytic Bacillus and their activities in enhancing plant growth. J Appl Microbiol 128:814–827

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Solanki MK, Yu Z-X, Anas M, Dong D-F, Xing Y-X, Malviya MK, Pang F, Li Y-R (2021) Genome characteristics reveal the biocontrol potential of actinobacteria isolated from sugarcane rhizosphere. Front Microbiol 12:797889

    Article  PubMed  PubMed Central  Google Scholar 

  • Warrad M, Hassan YM, Mohamed MS, Hagagy N, Al-Maghrabi OA, Selim S, Saleh AM, AbdElgawad H (2020) A bioactive fraction from Streptomyces sp. enhances maize tolerance against drought stress. J Microbiol Biotechn 30:1156–1168

    Article  CAS  Google Scholar 

  • Wei M, Liu X, He Y, Xu X, Wu Z, Yu K, Zheng X (2020) Biochar inoculated with Pseudomonas putida improves grape (Vitis vinifera L.) fruit quality and alters bacterial diversity. Rhizosphere 16

  • Wilson BR, Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y (2016) Siderophores in iron metabolism: from mechanism to therapy potential. Trends Mol Med 22:1077–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worsley SF, Newitt J, Rassbach J, Batey SF, Holmes NA, Murrell JC, Wilkinson B, Hutchings MI (2020) Streptomyces endophytes promote host health and enhance growth across plant species. Appl Environ Microbiol 86:e01053-e1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, He J, Wei X, Ju J, Ma J (2020) Exploration and genome mining of natural products from marine Streptomyces. Appl Microbiol Biot 104:67–76

    Article  CAS  Google Scholar 

  • York A (2020) Attracting a ride. Nat Rev Microbiol 18:316–317

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Gui Y, Li Z, Jiang C, Guo J, Niu D (2022) Induced systemic resistance for improving plant immunity by beneficial microbes. Plants 11:386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun T, Zhang M, Zhou D, Jing T, Zang X, Qi D, Chen Y, Li K, Zhao Y, Tang W (2021) Anti-foc RT4 activity of a newly isolated Streptomyces sp. 5–10 from a medicinal plant (Curculigo capitulata). Front Microbiol 11:3544

    Article  Google Scholar 

  • Zaroubi L, Ozugergin I, Mastronardi K, Imfeld A, Law C, Gélinas Y, Piekny A, Findlay BL (2022) The ubiquitous soil terpene geosmin acts as a warning chemical. Appl Environ Microbiol 88:e00093-e22

    Article  CAS  Google Scholar 

  • Zhan Y, Yan Y, Deng Z, Chen M, Lu W, Lu C, Shang L, Yang Z, Zhang W, Wang W (2016) The novel regulatory ncRNA, NfiS, optimizes nitrogen fixation via base pairing with the nitrogenase gene nifK mRNA in Pseudomonas stutzeri A1501. Proc Natl Acad Sci USA 113:E4348–E4356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Han L, Jiang B, Long C (2021) Identification of a phosphorus-solubilizing Tsukamurella tyrosinosolvens strain and its effect on the bacterial diversity of the rhizosphere soil of peanuts growth-promoting. World J Microb Biot 37:109

    Article  CAS  Google Scholar 

  • Zhu Z, Tian Z, Li J (2021) A Streptomyces morookaensis strain promotes plant growth and suppresses Fusarium wilt of banana. Trop Plant Pathol 46:175–185

    Article  Google Scholar 

Download references

Funding

The present study was supported by the National Natural Science Foundation of China (32101836), Guangxi Natural Science Foundation (CN) (2022GXNSFBA035542), the Scientific Startup Foundation for Doctors of Yulin Normal University (CN) (G2020ZK13).

Author information

Authors and Affiliations

Authors

Contributions

PF and WZ wrote the main manuscript text and MKS prepared figures 1. WZ and MKS reviewed the manuscript.

Corresponding authors

Correspondence to Manoj Kumar Solanki or Zhen Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, F., Solanki, M.K. & Wang, Z. Streptomyces can be an excellent plant growth manager. World J Microbiol Biotechnol 38, 193 (2022). https://doi.org/10.1007/s11274-022-03380-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-022-03380-8

Keywords

Navigation