Skip to main content

Advertisement

Log in

Insect microbial symbionts as a novel source for biotechnology

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Insecta is the most diverse and largest class of animals on Earth, appearing together with the emergence of the first terrestrial ecosystem. Owing to this great diversity and long-term coexistence, an amazing variety of symbiotic microorganisms have adapted specifically to insects as hosts. Insect symbionts not only participate in many relationships with the hosts but also represent a novel resource for biotechnological applications. The exploitation of mutualistic symbiosis represents a promising area to search for bioactive compounds and new enzymes for potential clinical, industrial or environmental applications. Moreover, the manipulation of parasitic symbiosis has particular potential to solve practical problems for the control of agricultural pests and disease vectors. Although the study of microbial symbionts has been impaired by the unculturability of most symbionts, the rapidly growing catalogue of microbial genomes and the application of modern genetic techniques provide an alternative approach to using these microbes. This minireview presents examples of microbial symbionts isolated from insects for emerging biotechnological use and illuminates new ways for discovering microorganisms of applied value from a particularly promising source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adams AS, Jordan MS, Adams SM et al (2011) Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. ISME J 5:1323–1331

    Article  CAS  Google Scholar 

  • Arora AK, Douglas AE (2017) Hype or opportunity? Using microbial symbionts in novel strategies for insect pest control. J Insect Physiol 103:10–17

    Article  CAS  Google Scholar 

  • Augustinos AA, Kyritsis GA, Papadopoulos NT, Abd-Alla AM, Caceres C, Bourtzis K (2015) Exploitation of the medfly gut microbiota for the enhancement of sterile insect technique: Use of Enterobacter sp. in Larval Diet-Based Probiotic Applications. PLoS ONE 10:e0136459

    Article  Google Scholar 

  • Berasategui A, Shukla S, Salem H, Kaltenpoth M (2016) Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol 100:1567–1577

    Article  CAS  Google Scholar 

  • Bombelli P, Howe CJ, Bertocchini F (2017) Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol 27:R292–R293

    Article  CAS  Google Scholar 

  • Challinor VL, Bode HB (2015) Bioactive natural products from novel microbial sources. Ann N Y Acad Sci 1354:82–97

    Article  Google Scholar 

  • Chen B, Teh BS, Sun C, Hu S, Lu X, Boland W, Shao Y (2016) Biodiversity and Activity of the Gut Microbiota across the Life History of the Insect Herbivore Spodoptera littoralis. Sci Rep 6:29505

    Article  CAS  Google Scholar 

  • Chen B, Du K, Sun C et al (2018a) Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J 12:2252–2262

    Article  CAS  Google Scholar 

  • Chen B, Yu T, Xie S et al (2018b) Comparative shotgun metagenomic data of the silkworm Bombyx mori gut microbiome. Sci Data 5:180285

    Article  CAS  Google Scholar 

  • Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y (2017) Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 5:13

    Article  Google Scholar 

  • Cladera JL, Vilardi JC, Juri M et al (2014) Genetics and biology of Anastrepha fraterculus: research supporting the use of the sterile insect technique (SIT) to control this pest in Argentina. BMC Genet 15:S12

    Article  Google Scholar 

  • Daisley BA, Trinder M, McDowell TW, Collins SL, Sumarah MW, Reid G (2018) Microbiota-mediated modulation of organophosphate insecticide toxicity by species-dependent interactions with lactobacilli in a drosophila melanogaster Insect Model. Appl Environ Microbiol 84:e02820–e02817

    Article  CAS  Google Scholar 

  • Degnan PH, Yu Y, Sisneros N, Wing RA, Moran NA (2009) Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc Natl Acad Sci USA 106:9063–9068

    Article  CAS  Google Scholar 

  • Duplouy A (2018) Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts. Peer J 6:e4629

    Article  Google Scholar 

  • Engel MS, Grimaldi DA (2004) New light shed on the oldest insect. Nature 427:627–630

    Article  CAS  Google Scholar 

  • Ewald PW (1987) Transmission Modes and Evolution of the Parasitism-Mutualism Continuum. Ann N Y Acad Sci 503:295–306

    Article  CAS  Google Scholar 

  • Florez LV, Biedermann PH, Engl T, Kaltenpoth M (2015) Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep 32:904–936

    Article  CAS  Google Scholar 

  • Florez LV, Scherlach K, Miller IJ, Rodrigues A, Kwan JC, Hertweck C, Kaltenpoth M (2018) An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. Nat Commun 9:2478

    Article  Google Scholar 

  • Fukui T, Kawamoto M, Shoji K et al (2015) The endosymbiotic bacterium wolbachia selectively kills male hosts by targeting the masculinizing gene. PLoS Pathog 11:e1005048

    Article  Google Scholar 

  • Gentile JE, Rund SSC, Madey GR (2015) Modelling sterile insect technique to control the population of Anopheles gambiae. Malar J 14:92

    Article  Google Scholar 

  • Gerardo N, Hurst G (2017) Q&A: Friends (but sometimes foes) within: the complex evolutionary ecology of symbioses between host and microbes. BMC Biol 15:126

    Article  Google Scholar 

  • Goettel MS, Koike M, Kim JJ, Aiuchi D, Shinya R, Brodeur J (2008) Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. J Invertebr Pathol 98:256–261

    Article  CAS  Google Scholar 

  • Haeder S, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci USA 106:4742–4746

    Article  CAS  Google Scholar 

  • Hansen AK, Moran NA (2014) The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23:1473–1496

    Article  Google Scholar 

  • Itoh H, Tago K, Hayatsu M, Kikuchi Y (2018) Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat Prod Rep 35:434–454

    Article  CAS  Google Scholar 

  • Klepzig KD, Adams AS, Handelsman J, Raffa KF (2009) Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environ Entomol 38:67–77

    Article  CAS  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41

    Article  CAS  Google Scholar 

  • Liang X, Sun C, Chen B et al (2018) Insect symbionts as valuable grist for the biotechnological mill: an alkaliphilic silkworm gut bacterium for efficient lactic acid production. Appl Microbiol Biotechnol 102:4951–4962

    Article  CAS  Google Scholar 

  • Mahar AN, Al-Siyabi AA, Elawad SA, Hague NG, Gowen SR (2006) Application of toxins from the entomopathogenic bacterium, Xenorhabdus nematophila, for the control of insects on foliage. Commun Agric Appl Biol Sci 71:233–238

    CAS  PubMed  Google Scholar 

  • Manfredi AP, Perotti NI, Martinez MA (2015) Cellulose degrading bacteria isolated from industrial samples and the gut of native insects from Northwest of Argentina. J Basic Microbiol 55:1384–1393

    Article  CAS  Google Scholar 

  • Mason KL, Stepien TA, Blum JE et al (2011) From commensal to pathogen: translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta. MBio 2:e00065–e00011

    Article  Google Scholar 

  • Matsui T, Tanaka J, Namihira T, Shinzato N (2012) Antibiotics production by an actinomycete isolated from the termite gut. J Basic Microbiol 52:731–735

    Article  CAS  Google Scholar 

  • Mika N, Zorn H, Ruhl M (2013) Insect-derived enzymes: a treasure for industrial biotechnology and food biotechnology. Adv Biochem Eng Biotechnol 136:1–17

    CAS  PubMed  Google Scholar 

  • Misof B, Liu SL, Meusemann K et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767

    Article  CAS  Google Scholar 

  • Ni J, Tokuda G (2013) Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol Adv 31:838–850

    Article  CAS  Google Scholar 

  • Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T (2014) Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci USA 111:10257–10262

    Article  CAS  Google Scholar 

  • Nikolouli K, Colinet H, Renault D et al (2018) Sterile insect technique and Wolbachia symbiosis as potential tools for the control of the invasive species Drosophila suzukii. J Pest Sci 91:489–503

    Article  Google Scholar 

  • Otagiri M, Lopez CM, Kitamoto K, Arioka M, Kudo T, Moriya S (2013) Heterologous expression and characterization of a glycoside hydrolase family 45 endo-beta-1,4-glucanase from a symbiotic protist of the lower termite, Reticulitermes speratus. Appl Biochem Biotechnol 169:1910–1918

    Article  CAS  Google Scholar 

  • Owuama CI (2001) Entomopathogenic symbiotic bacteria, Xenorhabdus and Photorhabdus of nematodes. World J Microbiol Biotechnol 17:505–515

    Article  CAS  Google Scholar 

  • Pagabeleguem S, Gimonneau G, Seck MT et al (2016) A molecular method to discriminate between mass-reared sterile and wild tsetse flies during eradication programmes that have a sterile insect technique component. PLoS Negl Trop Dis 10:e0004491

    Article  Google Scholar 

  • Perlman SJ, Dowdy NJ, Harris LR, Khalid M, Kelly SE, Hunter MS (2014) Factors affecting the strength of Cardinium-induced cytoplasmic incompatibility in the parasitic wasp Encarsia pergandiella (Hymenoptera: Aphelinidae). Microb Ecol 67:671–678

    Article  Google Scholar 

  • Piel J (2002) A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci USA 99:14002–14007

    Article  CAS  Google Scholar 

  • Rai M, Agarkar G (2016) Plant–fungal interactions: what triggers the fungi to switch among lifestyles? Crit Rev Microbiol 42:428–438

    Article  CAS  Google Scholar 

  • Raphael KA, Shearman DCA, Gilchrist AS et al (2014) Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique. BMC Genet 15:S9

    Article  Google Scholar 

  • Ricci I, Valzano M, Ulissi U, Epis S, Cappelli A, Favia G (2012) Symbiotic control of mosquito borne disease. Pathog Glob Health 106:380–385

    Article  Google Scholar 

  • Sachs JL, Skophammer RG, Regus JU (2011) Evolutionary transitions in bacterial symbiosis. Proc Natl Acad Sci USA 108:10800–10807

    Article  CAS  Google Scholar 

  • Scharf ME (2015) Termites as targets and models for biotechnology. Annu Rev Entomol 60:77–102

    Article  CAS  Google Scholar 

  • Shao Y, Chen B, Sun C, Ishida K, Hertweck C, Boland W (2017) Symbiont-derived antimicrobials contribute to the control of the lepidopteran gut microbiota. Cell Chem Biol 24:66–75

    Article  CAS  Google Scholar 

  • Shi YM, Bode HB (2018) Chemical language and warfare of bacterial natural products in bacteria-nematode-insect interactions. Nat Prod Rep 35:309–335

    Article  CAS  Google Scholar 

  • Singhal K, Khanna R, Mohanty S (2017) Is Drosophila-microbe association species-specific or region specific? A study undertaken involving six Indian Drosophila species. World J Microbiol Biotechnol 33:103

    Article  Google Scholar 

  • Skelton J, Doak S, Leonard M, Creed RP, Brown BL (2016) The rules for symbiont community assembly change along a mutualism-parasitism continuum. J Anim Ecol 85:843–853

    Article  Google Scholar 

  • Snyman M, Gupta AK, Bezuidenhout CC, Claassens S, van den Berg J (2016) Gut microbiota of Busseola fusca (Lepidoptera: Noctuidae). World J Microbiol Biotechnol 32:115

    Article  Google Scholar 

  • Tsukagoshi H, Nakamura A, Ishida T et al (2014) The GH26 beta-mannanase RsMan26H from a symbiotic protist of the termite Reticulitermes speratus is an endo-processive mannobiohydrolase: heterologous expression and characterization. Biochem Biophys Res Commun 452:520–525

    Article  CAS  Google Scholar 

  • Van Arnam EB, Ruzzini AC, Sit CS, Horn H, Pinto-Tomas AA, Currie CR, Clardy J (2016) Selvamicin, an atypical antifungal polyene from two alternative genomic contexts. Proc Natl Acad Sci USA 113:12940–12945

    Article  Google Scholar 

  • Vorburger C, Perlman SJ (2018) The role of defensive symbionts in host-parasite coevolution. Biol Rev Camb Philos Soc 93:1747–1764

    Article  Google Scholar 

  • Wei G, Lai Y, Wang G, Chen H, Li F, Wang S (2017) Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc Natl Acad Sci USA 114:5994–5999

    Article  CAS  Google Scholar 

  • Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609

    Article  CAS  Google Scholar 

  • Yan S, Wu G (2016) Analysis on evolutionary relationship of amylases from archaea, bacteria and eukaryota. World J Microbiol Biotechnol 32:24

    Article  Google Scholar 

  • Yang J, Yang Y, Wu WM, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784

    Article  CAS  Google Scholar 

  • Yang Y, Yang J, Wu WM et al (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. role of gut microorganisms. Environ Sci Technol 49:12087–12093

    Article  CAS  Google Scholar 

  • Zhang D, Lees RS, Xi Z, Gilles JR, Bourtzis K (2015a) Combining the sterile insect technique with wolbachia-based approaches: II–A safer approach to aedes albopictus population suppression programmes, designed to minimize the consequences of inadvertent female release. PLoS ONE 10:e0135194

    Article  Google Scholar 

  • Zhang D, Zheng X, Xi Z, Bourtzis K, Gilles JR (2015b) Combining the sterile insect technique with the incompatible insect technique: I-impact of wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus. PLoS ONE 10:e0121126

    Article  Google Scholar 

  • Zhang D, Lees RS, Xi Z, Bourtzis K, Gilles JR (2016) Combining the sterile insect technique with the incompatible insect technique: III-robust mating competitiveness of irradiated triple wolbachia-infected aedes albopictus males under semi-field conditions. PLoS ONE 11:e0151864

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. Ian Maddox for the invitation and encouragement to submit this paper. We also thank the editor and four anonymous reviewers for insightful comments on the manuscript, and we gratefully acknowledge the National Natural Science Foundation of China (Grant No. 31601906), the Modern Agricultural Industry Technology System (Grant No. CARS-18-ZJ0302), Zhejiang province analysis and testing science and technology project (Grant No. 2018C37060) and Max Planck Society for their financial support in our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqi Shao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Lan, Y., Sun, C. et al. Insect microbial symbionts as a novel source for biotechnology. World J Microbiol Biotechnol 35, 25 (2019). https://doi.org/10.1007/s11274-019-2599-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-019-2599-8

Keywords

Navigation