Skip to main content
Log in

Posttranslational modification of dinitrogenase reductase in Rhodospirillum rubrum treated with fluoroacetate

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nitrogen fixation is one of the major biogeochemical contributions carried out by diazotrophic microorganisms. The goal of this research is study of posttranslational modification of dinitrogenase reductase (Fe protein), the involvement of malate and pyruvate in generation of reductant in Rhodospirillum rubrum. A procedure for the isolation of the Fe protein from cell extracts was developed and used to monitor the modification of the Fe protein in vivo. The subunit pattern of the isolated the Fe protein after sodium dodecyl sulfate–polyacrylamide gel electrophoresis was assayed by Western blot analysis. Whole-cell nitrogenase activity was also monitored during the Fe protein modification by gas chromatograpy, using the acetylene reduction assay. It has been shown, that the addition of fluoroacetate, ammonia and darkness resulted in the loss of whole-cell nitrogenase activity and the in vivo modification of the Fe protein. For fluoroacetate, ammonia and darkness, the rate of loss of nitrogenase activity was similar to that for the Fe protein modification. The addition of NADH and reillumination of a culture incubated in the dark resulted in the rapid restoration of nitrogenase activity and the demodification of the Fe protein. Fluoroacetate inhibited the nitrogenase activity of R. rubrum and resulted in the modification of the Fe protein in cells, grown on pyruvate or malate as the endogeneous electron source. The nitrogenase activity in draTG mutant (lacking DRAT/DRAG system) decreased after the addition of fluoroacetate, but the Fe protein remained completely unmodified. The results showed that the reduced state of cell, posttranslational modifications of the Fe protein and the DRAT/DRAG system are important for nitrogenase activity and the regulation of nitrogen fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brostedt E, Lindblad A, Jansson J, Nordlund S (1997) Electron transport to nitrogenase in Rhodospirillum rubrum: the role of NAD(P)H as electron donor and the effect of fluoroacetate on nitrogenase activity. FEMS Microbiol Lett 150:263–267

    Article  CAS  Google Scholar 

  • Burris RH (1991) Nitrogenases J Biol Chem 266:9339–9342

    CAS  PubMed  Google Scholar 

  • Eisenberg MA (1953) The tricarboxylic acid cycle in Rhodospirillum rubrum. J Biol Chem 203:815–836

    CAS  PubMed  Google Scholar 

  • Elsden SR, Ormerod JG (1956) The effect of fluoroacetate on the metabolism of Rhodospirillum rubrum. Biochem J 63:691–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gest H, Ormerod JG, Ormerod KS (1962) Photometabolism of Rhodospirillum rubrum: light-dependent dissimilation of organic compounds to carbon dioxide and molecular hydrogen by an anaerobic citric acid cycle. Arch Biochem Biophys 97:21–33

    Article  CAS  PubMed  Google Scholar 

  • Gorell TE, Uffen RL (1978) Reduction of nucleotide adenine dinucleotide by pyruvate: lipoate oxidoreducatse in anaerobic, dark grown Rhodospirillum rubrum mutant C. J Bacteriol 134:830–836

    Google Scholar 

  • Grunwald SK, Ryle MJ, Lanzilotta WN, Ludden PW (2000) ADP-ribosylation of variants of Azotobacter vinelandii dinitrogenase reductase by Rhodospirillum rubrum dinitrogenase reductase ADP-ribosyltransferase. J Bacteriol 182:2597–2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halbleib CM, Zhang, Yaoping, Ludden PW (2000) Regulation of dinitrogenase reductase ADP-ribosyltransferase and dinirogenase reductase-activating glycohydrolase by a redox-dependent conformational change of nitrogenase Fe protein. J Biol Chem 275:3493–3500

    Article  CAS  PubMed  Google Scholar 

  • Heinrich D, Raberg M, Fricke P, Kenny ST, Morales-Gamez L, Babu RP, O’Connor KE, Steinbüchel A (2016) Syngas-derived medium-chain-length PHA synthesis in engineered Rhodospirillum rubrum. Appl Environ Microbiol 82(20):6132–6140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huergo LF, Merrick M, Pedrosa FO, Chubatsu LS, Araujo LM, Souza EM (2007) Ternary complex formation between AmtB, GlnZ and the nitrogenase regulatory enzyme DraG reveals a novel facet of nitrogen regulation in bacteria. Mol Microbiol 66:1523–1535

    CAS  PubMed  Google Scholar 

  • Jackson JB, Crofts AR (1968) Energy-linked reduction of nicotinamide adenine dinucleotides in cells of Rhodospirillum rubrum. Biochem Biophys Res Commun 32:908–915

    Article  CAS  PubMed  Google Scholar 

  • Javelle A, Lupo D, Ripoche P, Fulford T, Merrick M, Winkler FK (2008) Substrate binding, deprotonation, and selectivity at the periplasmic entrance of the Escherichia coli ammonia channel AmtB. Proc Natl Acad Sci USA 105:5040–5045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonsson A, Teixeira PF, Nordlund S (2007) The activity of adenylyltransferase in Rhodospirillum rubrum is only affected by alpha-ketoglutarate and unmodified PII proteins, but not by glutamine, in vitro. FEBS J 274 (10):2449–2460

    Article  CAS  PubMed  Google Scholar 

  • Kanemoto RH, Ludden PW (1984) Effect of ammonia, darkness and phenazine methosulfate on whole-cell nitrogenase activity and Fe protein modification in Rhodospirillum rubrum. J Bacteriol 158:713–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanemoto RH, Ludden PW (1987) Amino acid concentrations in Rhodospirillum rubrum during expression and switch-off of nitrogenase activity. J Bacteriol 169:3035–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch B, Evans HJ (1966) Reduction of acetylene to ethylene by soybean root nodules. Plant Physiol 41:1748–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Li J-D, Hu C-Z, Yoch DC (1987) Changes in amino acid and nucleotide pools of Rhodospirillum rubrum during switch-off of nitrogenase activity initiated by ammonium or darkness. J Bacteriol 169:231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang JH, Nielsen GM, Lies DP, Burris RH, Roberts GP, Ludden PW (1991) Mutations in the draT and draG genes of Rhodospirillum rubrum result in loss of regulation of nitrogenase by reversible ADP-ribosylation. J Bacteriol 173:6903–6909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowery RG, Ludden PW (1988) Purification and properties of dinitrogenase reductase ADPribosyltransferase from the photosynthetic bacterium Rhodospirillum rubnum. J Biol Chem 263:16714–16719

    CAS  PubMed  Google Scholar 

  • Lowery RG, Ludden PW (1989) Effect of nucleotides on the activity of dinitrogenase reductase ADPribosyltransferasefrom Rhodospirillum rubrum. Biochemistry 28:4956–4961

    Article  CAS  PubMed  Google Scholar 

  • Lowery RG, Saari LL, Ludden PW (1986) Reversible regulation of the nitrogenase iron protein from Rhodospirillum rubrum by ADP-ribosylation in vitro. J Bacteriol 166:513–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludden PW, Burries RH (1976) Activating factor for the iron protein of nitrogenase from Rhodospirillum rubrum. Science 194:424–426

    Article  CAS  PubMed  Google Scholar 

  • Ludden PW, Burris RH (1978) Purification and properties of nitrogenase from Rhodospirillum rubrum, and evidence for phosphate, ribose and an adenine-like unit covalently bound to the iron protein. Biochem J 175:251–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luderitz R, Klemme JH (1977) Isolation and characterization of a membrane bound pyruvate dehydrogenase complex from the phototrophic bacterium Rhodospirillum rubrum. Z Naturforsch 32c:351–361

    Article  Google Scholar 

  • Moure VR, Danyal K, Yang ZY, Wendroth S, Müller-Santos M, Pedrosa FO, Scarduelli M, Gerhardt EC, Huergo LF, Souza EM, Seefeldt LC (2012) The nitrogenase regulatory enzyme dinitrogenase reductase ADP-ribosyltransferase (DraT) is activated by direct interaction with the signal transduction protein GlnB. J Bacteriol 195:279–286. https://doi.org/10.1128/JB.01517-12

    Article  CAS  PubMed  Google Scholar 

  • Nordlund S, Hogbom M (2013) ADP-ribosylation, a mechanism regulating nitrogenase activity. FEBS J 280:3484–3490

    Article  CAS  PubMed  Google Scholar 

  • Nordlund S, Högland L (1986) Studies of the adenylate and pyridine nucleotide pools during nitrogenase switch-off in Rhodospirillum rubrum. Plant Soil 90:203–209

    Article  CAS  Google Scholar 

  • Nordlund S, Noren A (1984) Dependence on divalent cations of the activation of inactive Fe-protein of nitrogenase from Rhodospirillum rubrum. Biochim Biophys Acta 791:21–27

    Article  CAS  Google Scholar 

  • Noren A, Nordlund S (1994) Changes in the NAD (P) H concentration caused by addition of nitrogenase switch-off effectors in Rhodospirillum rubrum G-9, as measured by fluorescence. FEBS Lett 356:43–45

    Article  CAS  PubMed  Google Scholar 

  • Noren A, Soliman A, Nordlund S (1997) The role of NAD+ as a signal during nitrogenase switch-off in Rhodospirillum rubrum. Biochem J 322:829–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neal L, Ryu MH, Gomelsky M, Alexandre G (2017) Optogenetic manipulation of cyclic di-GMP (c-di-GMP) levels reveals the role of c-di-GMP in regulating aerotaxis receptor activity in Azospirillum brasilense. J Bacteriol 22:199–218

    Google Scholar 

  • Ormerod JG, Ormerod KS, Gest H (1961) Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch Biochem Biophys 94:449–463

    Article  CAS  PubMed  Google Scholar 

  • Paul TD, Ludden PW (1984) Adenine nucleotide level in Rhodospirillum rubrum during switch-off of nitrogenase activity. Biochem J 224:961–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponnuraj RK, Rubio LM, Grunwald SK, Ludden PW (2005) NAD-, NMN-, and NADP-dependent modification of dinitrogenase reductases from Rhodospirillum rubrum and Azotobacter vinelandii. FEBS Lett 579:5751–5758

    Article  CAS  PubMed  Google Scholar 

  • Pope MR, Murrell SA, Ludden PW (1985) Covalent modification of the iron protein of nitrogenase from Rhodospirillum rubrum by adenosine diphosphoribosylation of a specific arginine residue. Proc Natl Acad Sci USA 82(10):3173–3177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratt DC, Frenkel AW (1959) Studies on nitrogen fixation and photosynthesis of Rhodospirillum rubrum. Plant Physiol 34:333–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabouille S, Van de Waal DB, Matthijs HC, Huisman J (2014) Nitrogen fixation and respiratory electron transport in the cyanobacterium Cyanothece under different light/dark cycles. FEMS Microbiol Ecol 87:630–638

    Article  CAS  PubMed  Google Scholar 

  • Saari LL, Triplett EW, Ludden PW (1984) Purification and properties of the activating enzyme for iron protein of nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum. J Biol Chem 258:12064–12068

    Google Scholar 

  • Schick IHJ (1971) Regulation of photoreduction in Rhodospirillum rubrum by ammonia. Arch Mikrobiol 75:110–120

    Article  CAS  PubMed  Google Scholar 

  • Seefeldt LC, Hoffman BH, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selao TT, Nordlund S, Norén A (2008) Comparative proteomic studies in Rhodospirillum rubrum grown under different nitrogen conditions. J Proteome Res 7:3267–3275

    Article  CAS  PubMed  Google Scholar 

  • Selao TT, Edgren T, Wang H, Noren A, Nordlund S (2011) Effect of pyruvate on the metabolic regulation of nitrogenase activity in Rhodospirillum rubrum in darkness. Microbiology 157:1834–1840

    Article  CAS  PubMed  Google Scholar 

  • Soliman A, Nordlund S (1992) Studies on the effect of NAD (H) on nitrogenase activity in Rhodospirillum rubrum. Arch Microbiol 157:431–435

    Article  CAS  PubMed  Google Scholar 

  • Stewart WDP, Fitzgerald GP, Burris RH (1967) In situ studies on N2 fixation using the acetylene reduction technique. Proc Natl Acad Sci USA 58:2071–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira PF, Jonsson A, Frank M, Wang H, Nordlund S (2008) Interaction of the signal transduction protein GlnJ with the cellular targets AmtB1, GlnE and GlnD in Rhodospirillum rubrum: dependence on manganese, 2-oxoglutarate and the ADP/ATP ratio. Microbiology 154(Pt 8):2336–2347

    Article  CAS  PubMed  Google Scholar 

  • Teixeira PF, Wang H, Nordlund S (2010) Nitrogenase switch-off and regulation of ammonium assimilation in response to light deprivation in Rhodospirillum rubrum are influenced by the nitrogen source used during growth. Journal of bacteriology 192:1463–1466

    Article  CAS  PubMed  Google Scholar 

  • Tortajada M (2017) New waves underneath the purple strain. Microb Biotechnol 10(6):1297–1299

    Article  CAS  PubMed  Google Scholar 

  • Wolfe DM, Zhang Y, Roberts GP (2007) Specificity and regulation of interaction between the PII and AmtB1 proteins in Rhodospirillum rubrum. J Bacteriol 189:6861–6869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoch DC (1979) Manganese, an essential trace element for N2 fixation by Rhodospirillum rubrum and Rhodopseudomonas capsulata: role in nitrogenase regulation. J Bacteriol 140:987–995

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the financial support of FASE, State Registration of Research Study Work is # 01201361874.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Akentieva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akentieva, N. Posttranslational modification of dinitrogenase reductase in Rhodospirillum rubrum treated with fluoroacetate. World J Microbiol Biotechnol 34, 184 (2018). https://doi.org/10.1007/s11274-018-2564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2564-y

Keywords

Navigation