Skip to main content
Log in

Hyporientalin A, an anti-Candida peptaibol from a marine Trichoderma orientale

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A Trichoderma orientale strain LSBA1 was isolated from the Mediterranean marine sponge Cymbaxinella damicornis. The crude extract of T. orientale mycelium showed inhibitory activity against growth of Gram-positive and Gram-negative bacteria as well as clinical isolates of Candida albicans. Purification of the anti-Candida component was performed using a combination of open silica gel-60 column and reverse phase high performance liquid chromatography. The active compound called hyporientalin A has been identified as a peptaibol analogue of longibrachin-A-II using mass spectrometry. It exhibited fungicidal activity against clinical isolates of C. albicans with minimal inhibitory concentrations (MICs) ranging from 2.49 to 19.66 µM, comparable to that of the antifungal agent amphotericin B. Our data support the use of hyporientalin A as a promising new and efficient antifungal drug in the treatment of candidiasis while controlling toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atanasova L, Jaklitsch WM, Komon-Zelazowska M, Kubicek CP, Druzhinina IS (2010) Clonal species Trichoderma parareesei sp. nov. Likely resembles the ancestor of the cellulose producer Hypocrea jecorina/T. reesei. Appl Environ Microbiol 76:7259–7267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  PubMed  CAS  Google Scholar 

  • Brückner H, Kirschbaum J, Jaworski A (2002) Sequences of peptaibol antibiotics trichoaureocins from Trichoderma aureoviride. Proceedings of the 27th European Peptide Symposium, Sorrento, Etizioni Ziino, Napoli, Italy

  • Carotenuto A, Malfi S, Saviello MR, Campiglia P, Gomez-Monterrey I (2004) A different molecular mechanism underlying antimicrobial and hemolytic actions of temporins A and L. J Med Chem 51:2354–2362

    Article  CAS  Google Scholar 

  • Carroux A, van Bohemen AI, Roullier C, Robiou du Pont T, Vansteelandt M, Bondon A, Zalouk-Vergnoux A, Pouchus YF, Ruiz N (2013) Unprecedented 17-residue peptaibiotics produced by marine-derived Trichoderma atroviride. Chem Biodivers 10:772–786

    Article  PubMed  CAS  Google Scholar 

  • Chugh JK, Wallace BA (2001) Peptaibols: models for ion channels. Biochem Soc Trans 29:565–570

    Article  PubMed  CAS  Google Scholar 

  • Chugh JK, Brückner H, Wallace BA (2002) Model for a helical bundle channel based on the high-resolution crystal structure of trichotoxin A50E. Biochem 41:12934–12941

    Article  CAS  Google Scholar 

  • Clancy CJ, Staley B, Nguyen MH (2006) In vitro susceptibility of breakthrough Candida bloodstream isolates correlates with daily and cumulative doses of fluconazole. Antimicrob Agents Chemother 50:3496–3498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cos P, Vlietinck AJ, Vanden Berghe D, Maes L (2006) Anti-infective potential of natural products: how to develop a stronger in vitro “proof-of-concept”. J Ethnopharmacol 106:290–302

    Article  PubMed  CAS  Google Scholar 

  • De Carvalho CCR, Fernandes P (2010) Production of metabolites as bacterial responses to the marine environment. Mar Drugs 8:705–727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Komoj M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42:813–828

    Article  PubMed  CAS  Google Scholar 

  • Druzhinina IS, Komoń-Zelazowska M, Kredics L, Hatvani L, Antal Z, Belayneh T, Kubicek CP (2008) Alternative reproductive strategies of Trichoderma orientale and genetically close but clonal Trichoderma Longibrachiatum, both capable of causing invasive mycoses of humans. Microbiology 154:3447–3459

    Article  PubMed  CAS  Google Scholar 

  • Druzhinina IS, Komoń-Zelazowska M, Ismaiel A, Jaklitsch W, Mullaw T, Samuels GJ, Kubicek CP (2012) Molecular phylogeny and species delimitation in the section Longibrachiatum of Trichoderma. Fungal Genet Biol 49:358–368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duclohier H, Wroblewski H (2001) Voltage-dependant pore formation and antimicrobial activity by alamethicin and analogue. J Membr Biol 184:1–12

    Article  PubMed  CAS  Google Scholar 

  • Eid M, Rippa S, Castano S, Desbat B, Chopineau J, Rossi C, Béven L (2010) Exploring the membrane mechanism of the bioactive peptaibol ampullosporin A using lipid monolayers and supported biomimetic membranes. J Biophys 2010:1–12

    Article  CAS  Google Scholar 

  • Gal Hamed I, Atanasova L, Komon-Zelazowska M, Druzhinina IS, Viterbo A, Yarden O (2011) Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. Appl Environ Microbiol 77:5100–5109

    Article  CAS  Google Scholar 

  • Giangaspero A, Sandri L, Tossi A (2001) Amphipathic alpha helical antimicrobial peptides. Eur J Biochem 268:5589–5600

    Article  PubMed  CAS  Google Scholar 

  • Huang Q, Tezuka Y, Hatanaka Y, Kikuchi T, Nishi A, Tubaki K (1996) Studies on metabolites of mycoparasitic fungi. V. Ion-spray ionization mass spectrometric analysis of trichokonin II a peptaibol mixture obtained from the culture broth of Trichoderma koningii. Chem Pharm Bull 44:590–593

    Article  PubMed  CAS  Google Scholar 

  • Ishiyama D, Satou T, Senda H, Fujimaki T, Honda R, Kanazawa S (2000) Heptaibin, a novel antifungal peptaibol antibiotic from Emericellopsis sp. BAUA8289. J Antibiot 53:723–738

    Google Scholar 

  • Jaklitsch WM, Voglmayr H (2013) New combinations in Trichoderma (Hypocreaceae, Hypocreales). Mycotaxon 126:143–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Karle IL, Balaram P (1990) Structural characteristics of α-helical peptide molecules containing Aib residues. Biochemistry 29:6747–6756

    Article  PubMed  CAS  Google Scholar 

  • Krause C, Kirschbaum J, Jung G, Brückner H (2006) Sequence diversity of the peptaibol antibiotic suzukacillin-A from the mold Trichoderma viride. J Pept Sci 12:321–327

    Article  PubMed  CAS  Google Scholar 

  • Krause C, Kirschbaum J, Bruckner H (2007) Peptaibiomics: microheterogeneity, dynamics, and sequences of Trichobrachins, peptaibiotics from Trichoderma parceramosum Bissett (T. longibrachiatum Rifai). Chem Biodivers 4:1083–1102

    Article  PubMed  CAS  Google Scholar 

  • Kredics L, Szekeres A, Czifra D, Vágvölgyi C, Leitgeb B (2013) Recent results in alamethicin research. Chem Biodivers 10:744–771

    Article  PubMed  CAS  Google Scholar 

  • Leal MC, Sheridan C, Osinga R, Dionisio G, Rui JMR, Bruna S, Rui R, Calado R (2014) Marine microorganism-invertebrate assemblages: perspectives to solve the “supply problem” in the initial steps of drug discovery. Mar Drugs 12:3929–3952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leclerc G, Rebuffat S, Goulard C, Bodo B (1998) Directed biosynthesis of peptaibol antibiotics in two Trichoderma strains: fermentation and isolation. J Antibiot 51:170–177

    Article  PubMed  CAS  Google Scholar 

  • Leclerc G, Goulard C, Prigent Y, Bodo B, Wroblewski H, Rebuffat S (2001) Sequences and antimycoplasmic properties of longibrachins LGB II and LGB III, two novel 20-residue peptaibols from Trichoderma Longibrachiatum. J Nat Prod 64:164–170

    Article  PubMed  CAS  Google Scholar 

  • Mallick EM, Bennett RJ (2013) Sensing of the microbial neighborhood by Candida albicans. Plos Pathogens 9:e1003661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manimegalai K, Asha Devi NK, Padmavathy S (2013) Marine fungi as a source of secondary metabolites of antibiotics. Int J Biotechnol Bioeng 4:275–282

    Google Scholar 

  • Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2014) Pharmaceutically active secondary metabolites of marine actinobacteria. ‎Microbiol Res 169:262–278

    Article  PubMed  CAS  Google Scholar 

  • Mohamed-Benkada M, Montagu M, Biard JF, Mondeguer F, Vérité P, Dalgalarrondo M (2006) New short peptaibols from a marine Trichoderma strain. Rapid Commun Mass Spectrom 20:1176–1180

    Article  PubMed  CAS  Google Scholar 

  • Mohamed-Benkada M, Pouchus YF, Vérité P, Pagniez F, Caroff N, Ruiz N (2016) Identification and biological activities of long-chain peptaibols produced by a marine-derived strain of Trichoderma longibrachiatum. Chem Biodivers 13:521–530

    Article  PubMed  CAS  Google Scholar 

  • Nielsen K, Heitman J (2007) Sex and virulence of human pathogenic fungi. Adv Genet 57:143–173

    PubMed  CAS  Google Scholar 

  • Nworu CS, Esimone CO (2006) Comparative evaluation of three in vitro techniques in the interaction of Ampicillin and Ciprofloxacin against Staphylococcus aureus and Escherichia coli. Trop J Pharm Res 5:605–611

    Google Scholar 

  • Panizel I, Yarden O, Ilan M, Carmeli S (2013) Eight new peptaibols from sponge-associated Trichoderma atroviride. Mar Drugs 11:4937–4960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paz Z, Komon-Zelazowska M, Druzhinina IS, Aveskamp MM, Shnaiderman A, Aluma Y, Carmeli S, Ilan M, Yarden O (2010) Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge. Fungal Divers 42:17–26

    Article  Google Scholar 

  • Pieta P, Mirza J, Lipkowski J (2012) Direct visualization of the alamethicin pore formed in a planar phospholipid matrix. Proc Natl Acad Sci USA 52:21223–21227

    Article  Google Scholar 

  • Pruksakorn P, Arai M, Kotoku N, Vilcheze C, Baughn AD, Moodley P, Jacobs WR, Kobayashi M (2010) Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg Med Chem Lett 20:3658–3663

    Article  PubMed  CAS  Google Scholar 

  • Ren J, Yang Y, Liu D, Chen W, Proksch P, Shao B, Lin W (2013) Sequential determination of new peptaibols asperelines G-Z12 produced by marine-derived fungus Trichoderma asperellum using ultrahigh pressure liquid chromatography combined with electrospray-ionization tandem mass spectrometry. J Chromatogr A 1309:90–95

    Article  PubMed  CAS  Google Scholar 

  • Röhrich CR, Iversenb A, Jaklitschc WM, Voglmayr H, Vilcinskasa A, Nielsenb KF, Thraneb U, Von Döhren H, Brücknerf H, Degenkolb T (2013) Screening the biosphere: The fungicolous fungus Trichoderma phellinicola, a prolific source of hypophellins, new 17-, 18-, 19-, and 20-residue peptaibiotics. Chem Biodivers 10:787–812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saif H, Zeeshan F (2013). Novel regulatory mechanisms of pathogenicity and virulence to combat MDR in Candida albicans. Int J Microbiol. https://doi.org/10.1155/2013/240209

    Article  Google Scholar 

  • Samuels GJ, Ismaiel A, Mulaw TB, Szakacs G, Druzhinina IS, Kubicek CP, Jaklitsc WM (2012) The Longibrachiatum clade of Trichoderma: a revision with new species. Fungal Divers 55:77–108

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanguinetti M, Posteraro B, Fiori B, Ranno S, Torelli R, Fadda G (2005) Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob Agents Chemother 49:668–679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sansom MSP (1993) Alamethicin and related peptaibols-model ion channels. Eur Biophys J 22:105–124

    Article  PubMed  CAS  Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin SY, Lee SH, Yang ST, Park EJ, Lee DG, Lee MK, Eom SH, Song WK, Kim Y, Hahm KS, Kim JI (2001) Antibacterial, antitumor and hemolytic activities of alpha-helical antibiotic peptide, P18 and its analogs. J Pept Res 58:504–514

    Article  PubMed  CAS  Google Scholar 

  • Shushni MAM, Singh R, Mentel R, Lindequist U (2011) Balticolid: a new 12-membered macrolide with antiviral activity from an Ascomycetous fungus of marine origin. Mar Drugs 9:844–851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song XY, Shen QT, Xie ST, Chen XL, Sun CY, Zhang YZ (2006) Broad-spectrum antimicrobial activity and high stability of trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol Lett 260:119–125

    Article  CAS  Google Scholar 

  • Sun S, Tian L, Wu HZ, Chen G, Wu HH, Wang YN, Pei YH (2009) Two new compounds from fermentation liquid of the marine fungus Trichoderma atroviride G20-12. J Asian Nat Prod Res 11:898–903

    Article  PubMed  CAS  Google Scholar 

  • Tabbene O, Kalai L, Ben Slimen I, Karkouch I, Elkhahoui S, Gharbi A, Cosette P, Mangoni ML, Jouenne T, Limam F (2011) Anti-Candida effect of bacillomycin D-like lipopeptides from Bacillus subtilis B38. FEMS Microbiol Lett 316:108–114

    Article  PubMed  CAS  Google Scholar 

  • Tao LY, Zhang JY, Liang YJ, Chen LM, Zhen LS, Wang F, Mi YJ, She ZG, To KK, Lin YC, Fu LW (2010) Anticancer effect and structure-activity analysis of marine products isolated from metabolites of mangrove fungi in the south China Sea. Mar Drugs 8:1094–1105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toledo TR, Dejani NN, Monnazzi LGS, Kossuga MH, Berlinck RGS, Sette LD, Medeiros AI (2014) Potent anti-inflammatory activity of pyrenocine A isolated from the marine-derived fungus Penicillium paxilli Ma(G)K. Mediat Inflamm 2014:1–11

    Article  CAS  Google Scholar 

  • Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175

    Article  PubMed  CAS  Google Scholar 

  • Yarden O (2014) Fungal association with sessile marine invertebrates. Front Microbiol 5:1–6

    Article  Google Scholar 

  • Yashavanth R, Shiju MP, Bhaskar UA, Ronald R, Anita KB (2013) Candiduria: prevalence and trends in antifungal susceptibility in a tertiary care hospital of Mangalore. J Clin Diagn Res 11:2459–2461

    Google Scholar 

  • You J, Dai H, Chen Z, Liu G, He Z, Song F, Yang X, Fu H, Zhang L, Chen X (2010) Trichoderone, a novel cytotoxic cyclopentenone and cholesta-7, 22-diene-3 beta, 5 alpha, 6 beta-triol, with new activities from the marine-derived fungus Trichoderma sp. J Ind Microbiol Biotechnol 37:245–252

    Article  PubMed  CAS  Google Scholar 

  • Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963

    Article  CAS  Google Scholar 

  • Zainuddin N, Alias SA, Lee CW, Ebel R, Othman NA, Mat R, Mukhtar MR, Awang K (2010) Antimicrobial activities of marine fungi from Malaysia. Bot Mar 53:507–513

    Article  CAS  Google Scholar 

  • Zheng L, Chen H, Han X, Lin Z, Yan X (2005) Antimicrobial screening and active compound isolation from marine bacterium NJ6-3-1 associated with the sponge Hymeniacidon perleve. World J Microbiol Biotechnol 21:201–206

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. Rafed Daldoul from Diving Center Cap Afrique, Mahdia, Tunisia for helpful Scuba diving; we thank Dr. Perez from “Institut Méditerranéen de la Biodiversité et d’Ecologie Marine et Continentale, Marseille, France” for helpful comments and identification of Cymaxinella damicornis. We also wish to thank Dr. Yann Guitton for his technical contribution and Prof. E. Aouani for valuable discussion and critical reading of the manuscript. This study was supported by the “Ministère de l’Enseignement Supérieur and the project ECIMAR (French ANR in Biodiversity, 2006)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferid Limam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 408 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touati, I., Ruiz, N., Thomas, O. et al. Hyporientalin A, an anti-Candida peptaibol from a marine Trichoderma orientale. World J Microbiol Biotechnol 34, 98 (2018). https://doi.org/10.1007/s11274-018-2482-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2482-z

Keywords

Navigation