Skip to main content
Log in

Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Although the use of chemical pesticides has decreased in recent years, it is still a common method of pest control. However, chemical use leads to challenging problems. The harm caused by these chemicals and the length of time that they will remain in the environment is of great concern to the future and safety of humans. Therefore, developing new pest control agents that are safer and environmentally compatible, as well as assuring their widespread use is important. Entomopathogenic agents are microorganisms that play an important role in the biological control of pest insects and are eco-friendly alternatives to chemical control. They consist of viruses (non-cellular organisms), bacteria (prokaryotic organisms), fungi and protists (eukaryotic organisms), and nematodes (multicellular organisms). Genetic modification (recombinant technology) provides potential new methods for developing entomopathogens to manage pests. In this review, we focus on the important roles of recombinant entomopathogens in terms of pest insect control, placing them into perspective with other views to discuss, examine and evaluate the use of entomopathogenic agents in biological control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Bonning and Chougule (2014), Herzig et al. (2014) and ProCube™

Fig. 2

Similar content being viewed by others

References

  • Agaisse H, Lereclus D (1994) Expression in Bacillus subtilis of the Bacillus thuringiensis cryIIIA toxin gene is not dependent on a sporulation specific sigma factor and is increased in a spo0A mutant. J Bacteriol 176:4734–4741

    Article  CAS  Google Scholar 

  • Agaisse H, Lereclus D (1995) How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Biotech 177:6027–6032

    CAS  Google Scholar 

  • Arantes O, Lereclus D (1991) Construction of cloning vectors for Bacillus thuringiensis. Gene 108:115–119

    Article  CAS  Google Scholar 

  • Attathom T (2002) Biotechnology for insect pest control, Chap. 2, Biotechnology for sustainable bioproduction. Proc Sat Forum Sustainable agricultural system in Asia, Nagoya

  • Azizoglu U, Yilmaz S, Ayvaz A, Karabörklü S, Akbulut M (2011) Characterization of local Bacillus thuringiensis isolates and their toxicity to Ephestia kuehniella (Zeller) and Plodia interpunctella (Hübner) larvae. Egypt Biol Pest Control 21:143–150

    Google Scholar 

  • Azizoglu U, Bulut S, Yılmaz S (2012) Biological control in organic farming; entomopathogenic bioinsecticides. Erciyes Uni J Inst Sci Tech 28:375–381

    Google Scholar 

  • Azizoglu U, Yilmaz S, Ayvaz A, Karabörklü S (2015) Effects of Bacillus thuringiensis subsp. kurstaki HD1 spore-crystal mixture on the adults of egg parasitoid Trichogramma evanescens (Hymenoptera: Trichogrammatidae). Biotechnol Biotechnol Equip 29:653–658

    Article  CAS  Google Scholar 

  • Azizoglu U, Ayvaz A, Yilmaz S, Temizgül R (2016) The synergic and antagonistic activity of Cry1Ab and Cry2Aa proteins against lepidopteran pests. J Appl Entomol 140:223–227

    Article  CAS  Google Scholar 

  • Barboza-Corona JE, de la Fuente-Salcido NM, León-Galván MF (2012) Future challenges and prospects of Bacillus thuringiensis. In: Sansinenea E (ed) Bacillus thuringiensis biotechnology. Springer, Dordrecht, Chap. 19, pp 367–384

  • Baum JA, Malvar T (1995) Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol Microbiol 18:1–12

    Article  CAS  Google Scholar 

  • Baum JA, Coyle DM, Gilbert MP, Jany CS, Gawron-Burke C (1990) Novel cloning vectors for Bacillus thuringiensis. Appl Environ Microbiol 56:3420–3428

    CAS  Google Scholar 

  • Baum JA, Kakefuda M, Gawron-Burke C (1996) Engineering Bacillus thuringiensis bioinsecticides with an indigenous site-specific recombination system. Appl Environ Microbiol 62:4367–4373

    CAS  Google Scholar 

  • Baum JA, Johnson TB, Carlton BC (1999) Bacillus thuringiensis natural and recombinant bioinsecticide products. In: Hall FR, Menn JJ (eds) Methods in biotechnology, vol 5: biopesticides: use and delivery. Humana Press, Totowa, pp 189–210

    Google Scholar 

  • Bizzarri MF, Bishop AH (2008) The ecology of Bacillus thuringiensis on the Phylloplane: colonization from soil, plasmid transfer, and interaction with larvae of Pieris brassicae. Microb Ecol 56:133–139

    Article  CAS  Google Scholar 

  • Bonning BC, Chougule NP (2014) Delivery of intrahemocoelic peptides for insect pest management. Trends Biotechnol 32:91–98

    Article  CAS  Google Scholar 

  • Broderick NA, Raffa KF, Handelsman J (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc Natl Acad Sci USA 103:15196–15199

    Article  CAS  Google Scholar 

  • Broderick A, Robinson CJ, McMahon MD, Holt J, Handelsman J, Raffa KF (2009) Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. BMC Biol 7:1–9

    Article  CAS  Google Scholar 

  • Burnell A (2002) Genetics and genetic improvement. In: Gaugler R (ed) Entomopathogenic nematology. CABI International, Wallingford, pp 241–263

    Chapter  Google Scholar 

  • Carbonell LF, Hodge MR, Tomalski MD, Miller LK (1988) Synthesis of a gene coding for an insect-specific scorpion neurotoxin and attempts to express it using baculovirus vectors. Gene 73:409–418

    Article  CAS  Google Scholar 

  • Castagnola AS, Jurat-Fuentes JL (2012) Bt crops: past and future. In: Sansinenea E (ed) Bacillus thuringiensis biotechnology. Springer, Dordrecht, Chap. 15, pp 283–304

  • Chankhamhaengdecha ST, Tantichodok A, Panbangred W (2008) Spore stage expression of a vegetative insecticidal gene increase toxicity of Bacillus thuringiensis subsp. aizawai SP41 against Spodoptera exigua. J Biotechnol 136:122–128

    Article  CAS  Google Scholar 

  • Chen X, Li L, Hu Q, Zhang B, Wu W, Jin F, Jiang J (2015) Expression of dsRNA in recombinant Isaria fumosorosea strain targets the TLR7 gene in Bemisia tabaci. BMC Biotechnol 15:1–8

    Article  CAS  Google Scholar 

  • Corradi N, Keeling PJ (2009) Microsporidia: a journey through radical taxonomical revisions. Fungal Biol Rev 23:1–8

    Article  Google Scholar 

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D et al (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    CAS  Google Scholar 

  • Crickmore N, Zeigler DR, Schnepf E, Van Rie J, Lereclus D, Baum J, Bravo A, Dean DH (2011) Bacillus thuringiensis toxin nomenclature. http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/. Accessed 02 June 2011

  • Daborn PJ, Waterfield N, Silva CP, Au CP, Sharma S, ffrench-Constant RH (2002) A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proc Natl Acad Sci USA 99:10742–10747

    Article  CAS  Google Scholar 

  • Danışmazoğlu M, Demir I, Sezen K, Muratoğlu H, Nalçacioğlu R (2015) Cloning and expression of chitinase A, B, and C (chiA, chiB, chiC) genes from Serratia marcescens originating from Helicoverpa armigera and determining their activities. Turk J Biol 39:78–87

    Article  CAS  Google Scholar 

  • Fan Y, Fang W, Guo S, Pei X, Zhang Y, Xiao Y et al (2007) Increased insect virulence in Beauveria bassiana strains over-expressing an engineered chitinase. Appl Environ Microbiol 73:295–302

    Article  CAS  Google Scholar 

  • Fan Y, Pereira RM, Kilic E, Casella G, Keyhani NO (2012) Pyrokinin b-neuropeptide affects necrophoretic behavior in fire ants (S. invicta), and expression of b-NP in a mycoinsecticide increases its virulence. PLoS ONE 7:e26924

    Article  CAS  Google Scholar 

  • Fang WG, Leng B, Xiao YH, Jin K, Ma JC, Fan YH, Feng J, Yang XY, Zhang YJ, Pei Y (2005) Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Appl Environ Microbiol 71(1):363–370

    Article  CAS  Google Scholar 

  • Fang W, Feng J, Fan Y, Zhang Y, Bidochka MJ, St. Leger RJ et al (2009) Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. J Invertebr Pathol 102:155–159

    Article  CAS  Google Scholar 

  • Fang W, Lu HL, King GF, St. Leger RJ (2014) Construction of a hyper virulent and specific myco-insecticide for locust control. Sci Rep 4:7345

    Article  CAS  Google Scholar 

  • Federici BA, Park HW, Bideshi DK, Ge B (2000) Genetic engineering of bacterial insecticides for improved efficacy against medically important Diptera. In: Charles JF, Delécluse A, Nielsen-LeRoux C (eds) Entomopathogenic bacteria from laboratory to field application. Kluwer Academic, Amsterdam, pp 461–484

    Chapter  Google Scholar 

  • Federici BA, Park HW. Bideshi DK, Wirth MC, Johnson JJ (2003) Recombinant bacteria for mosquito control. J Exp Biol 206:3877–3885

    Article  CAS  Google Scholar 

  • Federici BA, Bonning BC, St. Leger RJ (2008) Improvement of insect pathogens as insecticides through genetic engineering. In: Hill C, Sleator R (eds), Pathobiotechnology. Landes Bioscience, Austin

    Google Scholar 

  • Gaugler R, Wilson M, Shearer P (1997) Field release and environmental fate of a transgenic entomopathogenic nematode. Biol Control 9:75–80

    Article  Google Scholar 

  • Gawron-Burke C, Baum JA (1991) Genetic manipulation of Bacillus thuringiensis insecticidal crystal protein genes in bacteria. Genet Eng 13:237–263

    Article  CAS  Google Scholar 

  • Gilmer AJ, Baum JA (1999) Chimeric lepidopteran-toxic crystal proteins. US Patent 5:965,428

  • Gopalakrishnan K, Muthukrishnan S, Kramer KJ (1995) Baculovirus-mediated expression of a Manduca sexta chitinase gene: properties of the recombinant protein. Insect Biochem Mol Biol 25:255–265

    Article  CAS  Google Scholar 

  • Hails RS (2001) Natural and genetically modified baculoviruses: environmentally friendly pest control or an ecological threat? Outlook Agric 30:171–178

    Article  Google Scholar 

  • Harrison RL, Bonning BC (1999) Genetic engineering of biocontrol agents for insects. In: Nancy A, Rechcigl JE (eds) Biological and biotechnological control of insect pests. CRC Press, Boca Raton

    Google Scholar 

  • Harrison RL, Hoover K (2012) Chap. 4: Baculoviruses and other occluded insect viruses. In: Vega FE, Kaya HK (eds) Insect pathology, 2nd edn. Academic Press, London, pp 73–131

    Chapter  Google Scholar 

  • Hashmi S, Hashmi G, Glazer I, Gaugler R (1998) Thermal response of Heterorhabditis bacteriophora transformed with the Caenorhabditis elegans hsp70 encoding gene. J Exp Zool 281:164–170

    Article  CAS  Google Scholar 

  • Hendriksen NB, Hansen BM (2002) Long-term survival and germination of Bacillus thuringiensis var. kurstaki in a field trial. Can J Microbiol 48:256–261

    Article  CAS  Google Scholar 

  • Herzig V, Bende NS, Shohidul Md A,. William TH, Kennedy RM, King GF (2014) Methods for deployment of spider venom peptides as bioinsecticides. Adv Insect Phys 47:389–411

    Article  Google Scholar 

  • Hurst MRH, Glare TR, Jackson TA (2004) Cloning Serratia entomophila anti feeding genes—a putative defective prophage active against the grass grub Costelytra zealandica. J Bacteriol 186:5116–5128

    Article  CAS  Google Scholar 

  • Inceoglu AB, Kamita SG, Hammock BD (2006) Genetically modified baculoviruses: a historical overview and future outlook. Adv Virus Res 68:323–360

    Article  CAS  Google Scholar 

  • Johnston PR, Crickmore N (2009) Gut bacteria are not required for the insecticidal activity of Bacillus thuringiensis toward the tobacco hornworm. Manduca sexta. Appl Environ Microbiol 75:5094–5099

    Article  CAS  Google Scholar 

  • Jurat-Fuentes JL, Jackson TA (2012) Bacterial entomopathogens. In: Vega FE, Kaya HK (eds) Insect pathology, 2nd edn. Academic Press, Waltham, pp 265–349

    Chapter  Google Scholar 

  • Kalman S, Kiehne KL, Cooper N, Reynoso MS, Yamamoto T (1995) Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes. Appl Environ Microbiol 61:3063–3068

    CAS  Google Scholar 

  • Karabörklü S, Ayvaz A, Yilmaz S, Azizoglu U, Akbulut M (2015) Native entomopathogenic nematodes isolated from Turkey and their effectiveness on pine processionary moth, Thaumetopoea wilkinsoni Tams. Int J Pest Manag 61:3–8

    Article  Google Scholar 

  • Kegley SE, Hill BR, Orm S, Choi AH (2011) PAN Pesticide Database, Pesticide Action Network, North America (San Francisco, CA). http://www.pesticideinfo.org

  • Kevany BM, Rasko DA, Thomas MG (2009) Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus. Appl Environ Microbiol 75:1144–1155

    Article  CAS  Google Scholar 

  • Khandelwal P, Choudhury D, Birah A, Reddy MK, Gupta GP, Banerjee N (2004) Insecticidal pilin subunit from the insect pathogen Xenorhabdu snematophila. J Bacteriol 186:6465–6476

    Article  CAS  Google Scholar 

  • Kroemer JA, Bonning BC, Harrison RL (2015) Expression, delivery and function of insecticidal proteins expressed by recombinant baculoviruses. Viruses 7:422–455

    Article  CAS  Google Scholar 

  • Lacey LA, Frutos R,. Kaya HK, Vail P (2001) Insect pathogens as biological control agents: do they have a future? Biol Control 21:230–248

    Article  Google Scholar 

  • Lecadet MM, Chaufaux J, Ribier J, Lereclus D (1992) Construction of novel Bacillus thuringiensis strains with different insecticidal activities by transduction and transformation. Appl Environ Microbiol 58:840–849

    CAS  Google Scholar 

  • Li L, Yu Z (2012) Genetically modified Bacillus thuringiensis biopesticides. In: Sansinenea E, (ed) Bacillus thuringiensis biotechnology. Springer, Dordrecht, Chap. 13, pp 231–258

    Google Scholar 

  • Liu D, Burton S, Glancy T, Li ZS, Hampton R, Meade T, Merlo DJ (2003) Insect resistance conferred by 283-kDa Photorhabdus luminescens protein TcdA in Arabidopsis thaliana. Nat Biotechnol 21:1222–1228

    Article  CAS  Google Scholar 

  • Liu D (2009) Design of gene constructs for transgenic maize. In: Scott MP (ed) Methods in molecular biology: transgenic maize, vol 526. Humana Press, Totowa

    Google Scholar 

  • Liu JR, Lin YD, Chang ST, Zeng YF, Wang SL (2010) Molecular Cloning and characterization of an insecticidal toxin from Pseudomonas taiwanensis. J Agric Food Chem 58:12343–12349

    Article  CAS  Google Scholar 

  • Liu H, Li M, Cai S, He X, Shao Y, Lu X (2016) Ricin-B-lectin enhances microsporidia Nosema bombycis infection in BmN cells from silkworm Bombyx mori. Acta Biochim Biophys Sin 48:1050–1057

    Article  Google Scholar 

  • Lu D, Baiocchi T, Dillman AR (2016) Genomics of entomopathogenic nematodes and implications for pest control. Trends Parasitol 32:588–598

    Article  Google Scholar 

  • Merzendorfer H (2013) Insect-derived chitinases. In: Vilcinskas A (ed) Yellow biotechnology II: insect biotechnology in plant protection and industry. Springer, Berlin, pp 19–50

    Chapter  Google Scholar 

  • Mishra SR (2009) Understanding forest biology. Discovery Publishing House, New Delhi

    Google Scholar 

  • Morales de la Vega L, Barboza-Corona JE, Aguilar-Uscanga MG, Ramírez-Lepe M (2006) Purification and characterization of an exochitinase from Bacillus thuringiensis ssp. aizawai and its action against phytopathogenic fungi. Can J Microbiol 52:651–657

    Article  Google Scholar 

  • Murphy RC, Stevens SE (1992) Cloning and expression of the cryIVD gene of Bacillus thuringiensis subsp. israelensis in the cyanobacterium Agmenellum quadruplicatum PR-6 and its resulting larvicidal activity. Appl Environ Microbiol 58:1650–1655

    CAS  Google Scholar 

  • O’Reilly DR, Miller LK (1991) Improvement of a baculovirus pesticide by deletion of the egt gene. Biotechnology 9:1086–1089

    Article  Google Scholar 

  • Olempska-Beer ZS, Merker RI, Ditto MD, DiNovi MJ (2006) Food-processing enzymes from recombinant microorganism. Regul Toxicol Pharmacol 45:144–158

    Article  CAS  Google Scholar 

  • Ortiz-Urquiza A, Luo Z, Keyhani NO (2015) Improving myco-insecticides for insect biological control. Appl Environ Microbiol 99:1057–1068

    CAS  Google Scholar 

  • Ozgen A, Sezen K, Demir I, Demirbag Z, Nalcacioglu R (2013) Molecular characterization of chitinase genes from a local isolate of Serratia marcescens and their contribution to the insecticidal activity of Bacillus thuringiensis strains. Curr Microbiol 67:499–504

    Article  CAS  Google Scholar 

  • Park HW, Federici BA (2009) Genetic engineering of bacteria to improve efficacy using the insecticidal proteins of Bacillus species. In: Stock SP, Vandenberg J, Glazer I, Boemare N (eds) Insect pathogens-molecular approaches and techniques. CABI Publishing, Cambridge, pp 275–305

    Chapter  Google Scholar 

  • Park HW, Ge B, Bauer LS, Federici BA (1998) Optimization of Cry3A yields in Bacillus thuringiensis by use of sporulation-dependent promoters in combination with the STAB-SD mRNA sequence. Appl Environ Microbiol 64:3932–3938

    CAS  Google Scholar 

  • Park HW, Federici BA, Sakano Y (2006) Inclusion proteins from other insecticidal bacteria. In: Shively JM (ed) Microbiology monographs, vol 1, “Inclusions in prokaryotes”. Springer, Heidelberg, pp 321–330

    Google Scholar 

  • Pava-Ripoll M, Posada FJ, Momen B, Wang C, St. Leger RJ (2008) Increased pathogenicity against coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae) by Metarhizium anisopliae expressing the scorpion toxin (AaIT) gene. J Invertebr Pathol 99:220–226

    Article  CAS  Google Scholar 

  • Peng G, Jin K, Liu Y, Xia Y (2015) Enhancing the utilization of host trehalose by fungal trehalase improves the virulence of fungal insecticide. Appl Microbiol Biotechnol 99:8611–8618

    Article  CAS  Google Scholar 

  • ProCube™ Biotechnology Center, Technology overview; silkworm-baculovirus expression system. http://procube.sysmex.co.jp/eng/p/e_silkworm_outline/

  • Raina AK, Vakharia VN, Leclerc RF, Blackburn MB (2007) Engineering a recombinant baculovirus with a peptide hormone gene and its effect on the corn earworm, Helicoverpa zea. Biopestic Int 3:43–52

    Google Scholar 

  • Raymond B, Lijek RS, Griffiths RI, Bonsall MB (2008) Ecological consequences of ingestion of Bacillus cereus on Bacillus thuringiensis infections and on the gut flora of a Lepidopteran host. J Invertebr Pathol 99:103–111

    Article  CAS  Google Scholar 

  • Raymond B, Johnston PR, Wright DJ, Ellis RJ, Crickmore N, Bonsall MB (2009) A mid-gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae. Environ Microbiol 11:2556–2563

    Article  CAS  Google Scholar 

  • Raymond B, Johnston PR, Nielsen-LeRoux C, Lereclus D, Crickmore N (2010) Bacillus thuringiensis: an impotent pathogen. Trends Microbiol 18:189–194

    Article  CAS  Google Scholar 

  • Rojas Avelizapa LI, Cruz-Camarillo R, Guerrero MI, Rodríguez-Vázquez R, Ibarra JE (1999) Selection and characterization of proteo-chitinolytic strain of Bacillus thuringiensis able to grow in shrimp waste media. World J Microbiol Biotechnol 15:299–308

    Article  Google Scholar 

  • Sanchis V, Agaisse H, Chaufaux J, Lereclus D (1997) A recombinase-mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains. Appl Environ Microbiol 63:779–784

    CAS  Google Scholar 

  • Sanchis V, Gohar M, Chaufaux J, Arantes O, Meier A, Agaisse H, Cayley J, Lereclus D (1999) Development and field performance of a broad-spectrum nonviable asporogenic recombinant strain of Bacillus thuringiensis with greater potency and UV resistance. Appl Environ Microbiol 65:4032–4039

    CAS  Google Scholar 

  • Schnepf HE (2012) Bacillus thuringiensis recombinant insecticidal protein production In: Sansinenea E (ed) Bacillus thuringiensis biotechnology. Springer, Dordrecht, Chap. 14, pp 259–281

    Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    CAS  Google Scholar 

  • Shapiro-Ilan DI, Gouge DH, Koppenh€ofer AM (2002) Factors affecting commercial success: case studies in cotton, turf and citrus. In: Gaugler R (ed) Entomopathogenic nematology. CAB International, Wallingford, pp 333–356

    Chapter  Google Scholar 

  • Siegel JP (2000) Bacteria. In: Lacey LL, Kaya HK (eds) field manual of techniques in invertebrate pathology. Kluwer Scientific Publishers, Dordrecht, pp 209–230

    Chapter  Google Scholar 

  • Skøt LS, Harrison P, Nath A, Mytton R, Clifford BC (1990) Expression of insecticidal activity in Rhizobium containning the δ-endotoxin gene cloned from Bacillus tenebrionis subsp. tenebrionis. Plant Soil 127:285–295

    Article  Google Scholar 

  • Slack J, Li Z, Escasa S, Doucet D, Ladd T, Quan G, Arif B (2009) Genomics of entomopathogenic viruses. In: Stock SP, Vandenberg J, Glazer I, Boemare N (eds), Insect pathogens: molecular approaches and techniques. CABI, Wallingford

    Google Scholar 

  • Solter LF, Becnel JJ, Oi DH (2012) Microsporidian entomopathogens. In: Vega FE, Kaya HK (eds) Insect pathology, 2nd edn. Academic Press, London, pp 222–263

    Google Scholar 

  • Song R, Peng D, Yu Z, Sun M (2008) Carboxy-terminal half of Cry1C can help vegetative insecticidal protein to form inclusion bodies in the mother cell of Bacillus thuringiensis. Appl Microbiol Biotechnol 80:647–654

    Article  CAS  Google Scholar 

  • St. Leger RJ, Joshi L, Bidochka MJ, Roberts DW (1996) Construction of an improved mycoinsecticide over-expressing a toxic protease. Proc Natl Acad Sci USA 93:6349–6354

    Article  CAS  Google Scholar 

  • Tamez-Guerra P, Valadez-Lira JA, Alcocer-Gonzalez JM, Oppert B, Gomez-Flores R, Tamez-Guerra R, Rodriguez-Padilla C (2008) Detection of gene encoding antimicrobial peptides in Mexican strains of Trichoplusia ni (Hübner) exposed to Bacillus thuringiensis. J Invertebr Pathol 98:218–227

    Article  CAS  Google Scholar 

  • Theoduloz C, Vega A, Salazar M et al (2003) Expression of a Bacillus thuringiensis delta-endotoxin cry1Ab gene in Bacillus subtilis and Bacillu slicheniformis strains that naturally colonize the phyllo plane of tomato plants (Lycopersicon esculentum, Mills). J Appl Microb 94:375–381

    Article  CAS  Google Scholar 

  • van Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101:1–16

    Article  CAS  Google Scholar 

  • van Frankenhuyzen K, Liu Y, Tonon A (2010) Interactions between Bacillus thuringiensis subsp. kurstaki HD-1 and midgut bacteria in larvae of gypsy moth and spruce budworm. J Invertebr Pathol 103:124–131

    Article  Google Scholar 

  • Vega FE, Meyling NV, Luangsa-ard JJ, Blackwell M (2012) Fungal entomopathogens. In: Vega FE, Kaya HK (eds) Insect pathology, 2nd edn. Academic Press, Waltham, pp 171–220

    Chapter  Google Scholar 

  • Vellai T, Molnár A, Lakatos L, Bánfalvi Z, Fodor A, Sáringer G (1999) Transgenic nematodes carrying a cloned stress resistance gene from yeast. In: Glazer P, Richardson P, Boemare N, Coudert F (eds) Survival of entomopathogenic nematodes. Office for Official Publications of the European Communities, Luxembourg, pp 105–119

  • Wang C, St. Leger RJ (2007) A scorpion neurotoxin increases the potency of a fungal insecticide. Nat Biotechnol 25:1455–1456

    Article  CAS  Google Scholar 

  • Waterfield NR. Bowen DJ. Fetherston JD. Perry RD, ffrench-Constant RH (2001) The toxin complex genes of Photorhabdus: a growing gene family. Trends Microbiol 9:185–191

    Article  CAS  Google Scholar 

  • Waterfield N, Hares M, Yang G, Dowling A, ffrench-Constant RH (2005a) Potentiation and cellular phenotypes of the insecticidal toxin complexes of Photorhabdus bacteria. Cell Microbiol 7:373–382

    Article  CAS  Google Scholar 

  • Waterfield N, Kamita SG, Hammock BD, ffrench-Constant R (2005b) The Photorhabdus Pir toxins are similar to a developmentally regulated insect protein but show no juvenile hormone esterase activity. FEMS Microbiol Lett 245:47–52

    Article  CAS  Google Scholar 

  • Xie M, Zhang YJ, Zhai XM, Zhao JJ, Peng DL, Wu G (2015) Expression of a scorpion toxin gene BmKit enhances the virulence of Lecanicillium lecanii against aphids. J Pest Sci 88:637–644

    Article  Google Scholar 

  • Yamamoto T (2001) One hundred years of Bacillus thuringiensis research and development: discovery to transgenic crops. J Insect Biotechnol Sericol 70:1–23

    CAS  Google Scholar 

  • Yang L, Keyhani NO, Tang G, Tian C, Lu R, Wang X et al (2014) Expression of a toll signaling regulator serpin in a mycoinsecticide for increased virulence. Appl Environ Microbiol 80:4531–4539

    Article  CAS  Google Scholar 

  • Yeh CM, Wang JP, Su FS (2007) Extracellular production of a novel ice structuring protein by Bacillus subtilis—a case of recombinant food peptide additive production. Food Biotechnol 21:119–128

    Article  CAS  Google Scholar 

  • Yilmaz S, Demirezen N, Azizoglu U, Karabörklü S, Ayvaz A, Akbulut M, Tekin S (2011) Identification of some cry1 genes and toxicity determination in Bacillus thuringiensis isolates obtained from mills and warehouses in Turkey. Egypt J Biol Pest Control 21:189–195

    Google Scholar 

  • Yilmaz S, Azizoglu U, Ayvaz A, Temizgül R, Atcıyurt ZB, Karabörklü S (2017) Cloning and expression of cry2Aa from native Bacillus thuringiensis strain SY49–1 and its insecticidal activity against Culex pipiens (Diptera: Culicidae). Microb Pathog 105:81–85

    Article  CAS  Google Scholar 

  • Yul RJ, Qin Liu O, Choi JY, Wang Y, Shim HJ, Xu HG, Choi GJ, Kim JC, Je YH (2009) Construction of a recombinant Bacillus velezensis strain as an integrated control agent against plant diseases and insect pests. J Microbiol Biotechnol 19:1223–1229

    Article  CAS  Google Scholar 

  • Zhao H, Lovett B, Fang W (2016) Genetically engineering entomopathogenic fungi. Adv Genet 94:137–163

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank American Journal Experts for their support provided in English revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur Azizoglu.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Salih Karabörklü and Ugur Azizoglu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karabörklü, S., Azizoglu, U. & Azizoglu, Z.B. Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control. World J Microbiol Biotechnol 34, 14 (2018). https://doi.org/10.1007/s11274-017-2397-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2397-0

Keywords

Navigation