Skip to main content
Log in

Fluorescent reporter systems for tracking probiotic lactic acid bacteria and bifidobacteria

  • REVIEW
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the last two decades, there has been increasing evidence supporting the role of the intestinal microbiota in health and disease, as well as the use of probiotics to modulate its activity and composition. Probiotic bacteria selected for commercial use in foods, mostly lactic acid bacteria and bifidobacteria, must survive in sufficient numbers during the manufacturing process, storage, and passage through the gastro-intestinal tract. They have several modes of action and it is crucial to unravel the mechanisms underlying their postulated beneficial effects. To track their survival and persistence, and to analyse their interaction with the gastro-intestinal epithelia it is essential to discriminate probiotic strains from endogenous microbiota. Fluorescent reporter proteins are relevant tools that can be exploited as a non-invasive marker system for in vivo real-time imaging in complex ecosystems as well as in vitro fluorescence labelling. Oxygen is required for many of these reporter proteins to fluoresce, which is a major drawback in anoxic environments. However, some new fluorescent proteins are able to overcome the potential problems caused by oxygen limitations. The current available approaches and the benefits/disadvantages of using reporter vectors containing fluorescent proteins for labelling of bacterial probiotic species commonly used in food are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Image from Landete et al. (2015)

Similar content being viewed by others

References

  • Allison GE, Klaenhammer TR (1996) Functional analysis of the gene encoding immunity to lactacin F, lafI, and its use as a Lactobacillus-specific, food-grade genetic marker. Appl Environ Microbiol 62:4450–4460

    CAS  Google Scholar 

  • Arqués JL, Hautefort I, Ivory K, Bertelli E, Regoli M, Clare S, Hinton JC, Nicoletti C (2009) Salmonella induces flagellin- and MyD88-dependent migration of bacteria-capturing dendritic cells into the gut lumen. Gastroenterology 137:579–587

    Article  Google Scholar 

  • Baird GS, Zacharias DA, Tsien RY (2000) Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97:11984–11989

    Article  CAS  Google Scholar 

  • Berlec A, Zavrsnik J, Butinar M, Turk B, Strukelj B (2015) In vivo imaging of Lactococcus lactis, Lactobacillus plantarum and Escherichia coli expresing infrared protein in mice. Microb Cell Fact 14:181

    Article  Google Scholar 

  • Bevis BJ, Glick BS (2002) Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 20:83–87

    Article  CAS  Google Scholar 

  • Bongaerts RJM, Hautefort I, Sidebotham JM, Hinton JCD (2002) Green fluorescent protein as a marker for conditional gene expression in bacterial cells. Methods Enzymol 358:43–66

    Article  CAS  Google Scholar 

  • Brancaccio VF, Zhurina DS, Riedel CU (2013) Tough nuts to crack: site-directed mutagenesis of bifidobacteria remains a challenge. Bioengineered 4:197–202

    Article  Google Scholar 

  • Campelo AB, Roces C, Mohedano LM, López P, Rodríguez A, Martínez B (2014) A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis. Microb Cell Fact 13:77

    Article  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  Google Scholar 

  • Chapman S, Faulkner C, Kaiserli E, Garcia-Mata C, Savenkov EI, Roberts AG, Oparka KJ, Christie JM (2008) The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proc Natl Acad Sci USA 105:20038–20043

    Article  CAS  Google Scholar 

  • Chudakov DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23:605–613

    Article  CAS  Google Scholar 

  • Coombes JL, Robey EA (2010) Dynamic imaging of host-pathogen interactions in vivo. Nat Rev Immunol 10:353–364

    Article  CAS  Google Scholar 

  • Cronin M, Sleator RD, Hill C, Fitzgerald GF, van Sinderen D (2008) Development of a luciferase-based reporter system to monitor Bifidobacterium breve UCC2003 persistence in mice. BMC Microbiol. doi:10.1186/1471-2180-8-161

    Google Scholar 

  • Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448–455

    Article  CAS  Google Scholar 

  • Cubitt AH, Wollenweber LA, Hein R (1999) Understanding structure–function relationships in the Aequorea victoria green fluorescent protein. Methods Cell Biol 58:19–30

    Article  CAS  Google Scholar 

  • Daniel C, Poiret S, Dennin V, Boutillier D, Pot B (2013) Bioluminescence imaging study of spatial and temporal persistence of Lactobacillus plantarum and Lactococcus lactis in living mice. Appl Environ Microbiol 79:1086–1094

    Article  CAS  Google Scholar 

  • Davidson MW, Campbell RE (2009) Engineered fluorescent proteins: innovations and applications. Nat Methods 6:713–717

    Article  CAS  Google Scholar 

  • Drepper T, Eggert T, Circolone F, Heck A, Krauss U, Guterl JK, Wendorff M, Losi A, Gartner W, Jaeger KE (2007) Reporter proteins for in vivo fluorescence without oxygen. Nat Biotechnol 25:443–445

    Article  CAS  Google Scholar 

  • Dupont L, Boizet-Bonhoure B, Coddeville M, Auvray F, Ritzenthaler P (1995) Characterization of genetic elements required for site-specific integration of Lactobacillus delbrueckii subsp. bulgaricus bacteriophage mv4 and construction of an integration-proficient vector for Lactobacillus plantarum. J Bacteriol 177:586–595

    CAS  Google Scholar 

  • Ernst JF, Tielker D (2009) Responses to hypoxia in fungal pathogens. Cell Microbiol 11:183–190

    Article  CAS  Google Scholar 

  • Farnworth ER (2008) The evidence to support health claims for probiotics. J Nutr 138:1250S–1254S

    CAS  Google Scholar 

  • Fernández de Palencia P, Nieto C, Acebo P, Espinosa M, Lopez P (2000) Expression of green fluorescent protein in Lactococcus lactis. FEMS Microbiol Lett 183:229–234

    Article  Google Scholar 

  • Fernández de Palencia PF, de la Plaza M, Mohedano ML, Martínez-Cuesta MC, Requena T, López P, Peláez C (2004) Enhancement of 2-methylbutanal formation in cheese by using a fluorescently tagged Lacticin 3147 producing Lactococcus lactis strain. Int J Food Microbiol 93:335–347

    Article  CAS  Google Scholar 

  • Fernández L, Marin M, Langa S, Martín R, Reviriego C, Fernández A, Olivares M, Xaus J, Rodríguez J (2004) A novel genetic label for detection of specific probiotic lactic acid bacteria. Food Sci Technol Int 10:101–108

    Article  CAS  Google Scholar 

  • Franz CMAP, Stiles ME, Schleifer KH, Holzapfel WH (2003) Enterococci in foods—a conundrum for food safety. Int J Food Microbiol 88:105–122

    Article  CAS  Google Scholar 

  • García-Cayuela T, de Cadiñanos LP, Mohedano ML, de Palencia PF, Boden D, Wells J, Peláez C, López P, Requena T (2012) Fluorescent protein vectors for promoter analysis in lactic acid bacteria and Escherichia coli. Appl Microbiol Biotechnol 96:171–181

    Article  CAS  Google Scholar 

  • Geoffroy MC, Guyard C, Quatannens B, Pavan S, Lange M, Mercenier A (2000) Use of green fluorescent protein to tag lactic acid bacterium strains under development as live vaccine vectors. Appl Environ Microbiol 66:383–391

    Article  CAS  Google Scholar 

  • Giepmans BNG (2008) Bridging Xuorescence microscopy and electron microscopy. Histochem Cell Biol 130:211–217

    Article  CAS  Google Scholar 

  • Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    Article  CAS  Google Scholar 

  • Giraffa G (2003) Functionality of enterococci in dairy products. Int J Food Microbiol 88:215–222

    Article  CAS  Google Scholar 

  • Gory L, Montel MC, Zagorec M (2001) Use of green fluorescent protein to monitor Lactobacillus sakei in fermented meat products. FEMS Microbiol Lett 194:127–133

    Article  CAS  Google Scholar 

  • Greer LF, Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17:43–74

    Article  CAS  Google Scholar 

  • Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein: mechanism and applications. J Biol Chem 276:29188–29194

    Article  CAS  Google Scholar 

  • Grimm V, Gleinser M, Neu C, Zhurina D, Riedel CU (2014) Expression of fluorescent proteins in bifidobacteria for analysis of host-microbe interactions. Appl Environ Microbiol 80:2842–2850

    Article  CAS  Google Scholar 

  • Guinane CM, Piper C, Draper LA, O’Connor PM, Hill C, Ross RP, Cotter PD (2015) Impact of environmental factors on bacteriocin promoter activity in gut-derived Lactobacillus salivarius. Appl Environ Microbiol 81:7851–7859

    Article  CAS  Google Scholar 

  • Gurskaya NG, Fradkov AF, Pounkova NI, Staroverov DB, Bulina ME, Yanushevich YG, Labas YA, Lukyanov S, Lukyanov KA (2003) A colorless green fluorescent protein homologue from the non-fluorescent hydromedusa Aequorea coerulescens and its fluorescent mutants. Biochem J 373:403–408

    Article  CAS  Google Scholar 

  • Han X, Wang L, Li W, Li B, Yang Y, Yan H, Qu L, Chen Y (2015) Use of green fluorescent protein to monitor Lactobacillus plantarum in the gastrointestinal tract of goats. Braz J Microbiol 46:849–854

    Article  Google Scholar 

  • Hansen MC, Palmer RJ, Udsen C, White DC, Molin S (2001) Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration. Microbiology 147:1383–1391

    Article  CAS  Google Scholar 

  • Hashemzadeh F, Rahimi S, Karimi Torshizi MA, Masoudi AA (2015) Usage of green fluorescent protein for tracing probiotic bacteria in alimentary tract and efficacy evaluation of different probiotic administration methods in broilers. J Agric Sci Technol 17:345–356

    Google Scholar 

  • Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182

    Article  CAS  Google Scholar 

  • Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and post-translational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA 91:12501–12504

    Article  CAS  Google Scholar 

  • Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence. Nature 373:663–664

    Article  CAS  Google Scholar 

  • Heimbach JT (2008) Health-benefit claims for probiotic products. Clin Infect Dis 46:S122–S124

    Article  Google Scholar 

  • Hertel C, Ludwig W, Schleifer KH (1992) Introduction of silent mutations in a proteinase gene of Lactococcus lactis as a useful marker for monitoring studies. Syst Appl Microbiol 15:447–452

    Article  CAS  Google Scholar 

  • Hutchens M, Luker GD (2007) Applications of bioluminescence imaging to the study of infectious diseases. Cell Microbiol 9:2315–2322

    Article  CAS  Google Scholar 

  • Karasawa S, Araki T, Yamamoto-Hino M, Miyawaki A (2003) A green-emitting fluorescent protein from Galaxeidae coral and its monomeric version for use in fluorescent labeling. J Biol Chem 278:34167–34171

    Article  CAS  Google Scholar 

  • Karasawa S, Araki T, Nagi T, Mizuno H, Miyawaki A (2004) Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem J 381:307–312

    Article  CAS  Google Scholar 

  • Karimi S, Ahl D, Vagesjö E, Holm L, Phillipson M, Jonsson H, Ross S (2016) In vivo and in vitro detection of luminiscent and fluorescent Lactobacillus reuteri and application of red fluorescent protein mCherry for assesing plasmid persistence. PLoS ONE 11:e0151969

    Article  Google Scholar 

  • Kaushik JK, Kumar A, Duary RK, Mohanty AK, Grover S, Batish VK (2009) Functional and probiotic attributes of ana indigenous isolate of Lactobacillus plantarum. PLoS ONE 4:e8099

    Article  CAS  Google Scholar 

  • Klijn N, Weerkamp AH, de Vos WM (1995) Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Appl Environ Microbiol 61:2771–2774

    CAS  Google Scholar 

  • Kremers GJ, Gilbert SG, Cranfill PJ, Davidson MW, Piston DW (2011) Fluorescent proteins at a glance. J Cell Sci 124:157–160

    Article  CAS  Google Scholar 

  • Kubota H, Senda S, Nomura N, Tokuda H, Uchiyama H (2008) Biofilm formation by lactic acid bacteria and resistance to environmental stress. J Biosci Bioeng 106:381–386

    Article  CAS  Google Scholar 

  • Lagendijk EL, Validov S, Lamers GEM, de Weert S, Bloemberg GV (2010) Genetic tools for tagging gram-negative bacteria with mCherry for visualization in vitro and in natural habitats, biofilm and pathogenicity studies. FEMS Microbiol Lett 305:81–90

    Article  CAS  Google Scholar 

  • Landete JM, Peirotén A, Rodríguez E, Margolles A, Medina M, Arqués JL (2014) Anaerobic green fluorescent protein as a marker of Bifidobacterium strains. Int J Food Microbiol 175:6–13

    Article  CAS  Google Scholar 

  • Landete JM, Langa S, Revilla C, Margolles A, Medina M, Arqués JL (2015) Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria. Appl Microbiol Biotechnol 99:6865–6877

    Article  CAS  Google Scholar 

  • Larrainzar E, O’Gara F, Morrissey JP (2005) Applications of autofluorescent proteins for in situ studies in microbial ecology. Annu Rev Microbiol 59:257–277

    Article  CAS  Google Scholar 

  • Lee JH, O’Sullivan DJ (2010) Genomic insights into bifidobacteria. Microbiol Mol Biol Rev 74:378–416

    Article  CAS  Google Scholar 

  • Lillehaug D, Nes IF, Birkeland NK (1997) A highly efficient and stable systems for site-specific integration of genes and plasmids into the phage φLC3 attachment site (attB) of the Lactococcus lactis chromosome. Gene 188:129–136

    Article  CAS  Google Scholar 

  • Maguin E, Prévost H, Ehrlich D, Gruss A (1996) Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J Bacteriol 178:931–935

    CAS  Google Scholar 

  • Manta C, Heupel E, Radulovic K, Rossini V, Garbi N, Riedel CU, Niess JH (2013) CX(3)CR1(+) macrophages support IL-22 production by innate lymphoid cells during infection with Citrobacter rodentium. Mucosal Immunol 6:177–188

    Article  CAS  Google Scholar 

  • Maruo T, Sakamoto M, Toda T, Benno Y (2006) Monitoring the cell number of Lactococcus lactis subsp cremoris FC in human feces by real-time PCR with strain-specific primers designed using the RAPD technique. Int J Food Microbiol 110:69–76

    Article  CAS  Google Scholar 

  • Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973

    Article  CAS  Google Scholar 

  • McAuliffe O, Hill C, Ross RP (2000) Identification and overexpression of ltnI, a novel gene which confers immunity to the two-component lantibiotic lacticin 3147. Microbiology 146:129–138

    Article  CAS  Google Scholar 

  • Miyawaki A (2005) Innovations in the imaging of brain functions using fluorescent proteins. Neuron 48:189–199

    Article  CAS  Google Scholar 

  • Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dyanmic and quantitative calcium measurements using improved cameleons. Proc Natl Acad Sci USA 96:2135–2140

    Article  CAS  Google Scholar 

  • Mohedano ML, Garcia-Cayuela T, Perez-Ramos A, Gaiser RA, Requena T, López P (2015) Construction and validation of a mCherry protein vector for promoter analysis in Lactobacillus acidophilus. J Ind Microbiol Biotechnol 42:247–253

    Article  CAS  Google Scholar 

  • Montenegro-Rodríguez C, Peirotén A, Sanchez-Jimenez A, Arqués JL, Landete JM (2015) Analysis of gene expression of bifidobacteria using as the reporter an anaerobic fluorescent protein. Biotechnol Lett 37:1405–1413

    Article  CAS  Google Scholar 

  • Mukherjee A, Schroeder CM (2015) Flavin-based fluorescent proteins: emerging paradigms in biological imaging. Curr Opin Biotechnol 31:16–23

    Article  CAS  Google Scholar 

  • Mukherjee A, Walker J, Weyant KB, Schroeder CM (2013) Characterization of flavin-based fluorescent proteins: an emerging class of fluorescent reporters. PLoS ONE 8:e64753

    Article  CAS  Google Scholar 

  • Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  CAS  Google Scholar 

  • Nguyen AW, Daugherty PS (2005) Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23:355–360

    Article  CAS  Google Scholar 

  • Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, Littman DR, Reinecker HC (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254–258

    Article  CAS  Google Scholar 

  • Nikitas G, Deschamps C, Disson O, Niault T, Cossart P, Lecuit M (2011) Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. J Exp Med 208:2263–2277

    Article  CAS  Google Scholar 

  • Ormö M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    Article  Google Scholar 

  • Patterson GH (2004) A new harvest of fluorescent proteins. Nat Biotechnol 22:1524–1525

    Article  CAS  Google Scholar 

  • Patterson GH, Piston DW, Day RN (2001) Fluorescent protein spectra. J Cell Sci 114:837–838

    CAS  Google Scholar 

  • Pérez-Arellano I, Pérez-Martinez G (2003) Optimization of the green fluorescent protein (GFP) expression from a lactose-inducible promoter in Lactobacillus casei. FEMS Microbiol Lett 222:123–127

    Article  CAS  Google Scholar 

  • Phumkhachorn P, Rattanachaikunsopon P, Khunsook S (2007) Use of the gfp gene in monitoring bacteriocin-producing Lactobacillus plantarum N014, a potential starter culture in nham fermentation. J Food Prot 70:419–424

    CAS  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  CAS  Google Scholar 

  • Reid BG, Flynn GC (1997) Chromophore formation in green fluorescent protein. Biochemistry 36:6786–6791

    Article  CAS  Google Scholar 

  • Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367

    Article  CAS  Google Scholar 

  • Rizzo MA, Davidson MW, Piston DW (2010) Fluorescent protein tracking and detection. In: Goldman RD, Swedlow JR, Spector DL (eds) Live cell imaging: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, pp 3–34

    Google Scholar 

  • Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22:445–449

    Article  CAS  Google Scholar 

  • Rizzuto R, Brini M, De Giorgi F, Rossi R, Hein R, Tsien RY, Pozzan T (1996) Double labeling of subcellular structures with organelle-targeted GFP mutants in vivo. Curr Biol 6:183–188

    Article  CAS  Google Scholar 

  • Rossini V, Zhurina D, Radulovic K, Manta C, Walther P, Riedel CU, Niess JH (2014) CX3CR1+ cells facilitate the activation of CD4 T cells in the colonic lamina propria during antigen-driven colitis. Mucosal Immunol 7:533–548

    Article  CAS  Google Scholar 

  • Ruiz L, Motherway MO, Lanigan N, van Sinderen D (2013) Transposon mutagenesis in Bifidobacterium breve: construction and characterization of a Tn5 transposon mutant library for Bifidobacterium breve UCC2003. PLoS ONE 8:e64699

    Article  CAS  Google Scholar 

  • Rush CM, Hafner LM, Timms P (1994) Genetic modification of a vaginal strain of Lactobacillus fermentum and its maintenance within the reproductive tract after intravaginal administration. J Med Microbiol 41:272–278

    Article  CAS  Google Scholar 

  • Russo P, Iturria I, Mohedano ML, Caggianiello G, Rainieri S, Fiocco D, Pardo MA, López P, Spano G (2015) Zebrafish gut colonization by mCherry-labelled lactic acid bacteria. Appl Microbiol Biotechnol 99:3479–3490

    Article  CAS  Google Scholar 

  • Sarxelin M, Tynkkynen S, Mattila-sandholm T, de Vos WM (2005) Probiotic and other functional microbes: from markets to mechanisms. Curr Opin Microbiol 16:204–211

    Google Scholar 

  • Scott KP, Mercer DK, Glover LA, Flint HJ (1998) The green fluorescent protein as a visible marker for lactic acid bacteria in complex ecosystems. FEMS Microbiol Ecol 26:219–230

    Article  CAS  Google Scholar 

  • Scott KP, Mercer DK, Richardson AJ, Melville CM, Glover LA, Flint HJ (2000) Chromosomal integration of the green fluorescent protein gene in lactic acid bacteria and the survival of marked strains in human gut simulations. FEMS Microbiol Lett 182:23–27

    Article  CAS  Google Scholar 

  • Shagin DA, Barsova EV, Yanushevich YG, Fradkov AF, Lukyanov KA, Labas YA, Semenova TN, Ugalde JA, Meyers A, Nunez JM, Widder EA, Lukyanov SA, Matz MV (2004) GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. Mol Biol Evol 21:841–850

    Article  CAS  Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  CAS  Google Scholar 

  • Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  CAS  Google Scholar 

  • Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120:4247–4260

    Article  CAS  Google Scholar 

  • Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, Davidson MW, Tsien RY (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5:545–551

    Article  CAS  Google Scholar 

  • Shcherbo D, Murphy CS, Ermakova GV et al (2009) Far-red fluorescent tags for protein imaging in living tissues. Biochem J 418:567–574

    Article  CAS  Google Scholar 

  • Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  Google Scholar 

  • Southward CM, Surette MG (2002) The dynamic microbe: green fluorescent protein brings bacteria to light. Mol Microbiol 45:1191–1196

    Article  CAS  Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    Article  CAS  Google Scholar 

  • Sugimura Y, Hagi T, Hoshino T (2011) Correlation between in vitro mucus adhesion and the in vivo colonization ability of lactic acid bacteria: screening of new candidate carp probiotics. Biosci Biotechnol Biochem 75:511–515

    Article  CAS  Google Scholar 

  • Sullivan KF (1999) Enlightening mitosis: construction and expression of green fluorescent fusion proteins. Methods Cell Biol 61:113–135

    Article  CAS  Google Scholar 

  • Sun Z, Baur A, Zhurina D, Yuan J, Riedel CU (2012) Accessing the inaccessible: molecular tools for bifidobacteria. Appl Environ Microbiol 78:5035–5042

    Article  CAS  Google Scholar 

  • Tauer C, Heinl S, Egger E, Heiss S, Grabher R (2014) Tuning constitutive recombinant gene expression in Lactobacillus plantarum. Microb Cell Fact 13:150

    Article  CAS  Google Scholar 

  • Toda T, Kosaka H, Terai M, Mori H, Benno Y, Yamori Y (2005) Effects of fermented milk with Lactococcus lactis subsp cremoris FC on defecation frequency and fecal microflora in healthy elderly volunteers. J Jpn Soc Food Sci Technol 52:243–250

    Article  Google Scholar 

  • Tsien R (1998) The green fluorescent protein. Ann Rev Biochem 67:509–544

    Article  CAS  Google Scholar 

  • van Zyl WF, Deane SM, Dicks LM (2015a) Reporter systems for in vivo tracking of lactic acid bacteria in animal model studies. Gut Microbes 6:291–299

    Article  Google Scholar 

  • van Zyl WF, Deane SM, Dicks LM (2015b) Use of the mCherry fluorescent protein to study intestinal colonization by Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 in mice. Appl Environ Microbiol 81:5993–6002

    Article  CAS  Google Scholar 

  • Verkhusha VV, Lukyanov KA (2004) The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat Biotechnol 22:289–298

    Article  CAS  Google Scholar 

  • Wachter RM, Elsliger MA, Kallio K, Hanson GT, Remington SJ (1998) Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Structure 6:1267–1277

    Article  CAS  Google Scholar 

  • Wang L, Jackson WC, Steinbach PA, Tsien RY (2004) Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci USA 101:16745–16749

    Article  CAS  Google Scholar 

  • Wang YP, Wang JR, Dai WL (2011) Use of GFP to trace the colonization of Lactococcus lactis WH-C1 in the gastrointestinal tract of mice. J Microbiol Methods 86:390–392

    Article  Google Scholar 

  • Ward WW (2006) Biochemical and physical properties of green fluorescent protein. In: Chalfie M, Kain SR (eds) Green fluorescent protein: properties, applications, and protocols. Wiley-Interscience, New York, pp 39–65

    Google Scholar 

  • Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864

    Article  CAS  Google Scholar 

  • Wingen M, Potzkei J, Endres S, Casini G, Rupprecht C, Krauss U, Jaeger K, Drepper T, Gensch T (2014) The photophysics of LOV-based fluorescent proteins—new tools for cell biology. Photochem Photobiol Sci 13:875–883

    Article  CAS  Google Scholar 

  • Yu Q, Dong S, Zhu W, Yang Q (2007) Use of green fluorescent protein to monitor Lactobacillus in the gastro-intestinal tract of chicken. FEMS Microbiol Lett 275:207–213

    Article  CAS  Google Scholar 

  • Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916

    Article  CAS  Google Scholar 

  • Zapata-Hommer O, Griesbeck O (2003) Efficiently folding and circular permuted variants of the Sapphire mutant of GFP. BMC Biotechnol 3:5–11

    Article  Google Scholar 

  • Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    Article  CAS  Google Scholar 

  • Zhang C, Xing XH, Lou K (2005) Rapid detection of a gfp-marked Enterobacter aerogenes under anaerobic conditions by aerobic fluorescence recovery. FEMS Microbiol Lett 249:211–218

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by project RTA2013-00029-00-00 from the Spanish Ministry of Economy and Competitiveness (MINECO). J.M. Landete has a postdoctoral contract with the research program “Ramón y Cajal” from MINECO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan L. Arqués.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landete, J.M., Medina, M. & Arqués, J.L. Fluorescent reporter systems for tracking probiotic lactic acid bacteria and bifidobacteria. World J Microbiol Biotechnol 32, 119 (2016). https://doi.org/10.1007/s11274-016-2077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2077-5

Keywords

Navigation