Skip to main content

Advertisement

Log in

Water-related environments: a multistep procedure to assess the diversity and enzymatic properties of cultivable bacteria

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Studying the culturable portion of environmental bacterial populations is valuable for understanding the ecology, for discovering taxonomically interesting isolates and for exploiting their enzymatic abilities. In this study, diverse water-related samples, iced water (3 °C) from river, the sediment (29 °C) and water (55 °C) of a hot-spring, were investigated by two cultivation strategies, Dry and novel Wet approach. The isolates were clustered by fluorescent internal transcribed spacer PCR and identified by 16S rRNA sequencing. Several bacterial groups were also sub-typed through the application of Random Amplified Microsatellite Polymorphisms method. A broad enzymatic screening of all bacterial isolates was performed in order to assess the proteolytic, cellulolytic, lipolytic, esterolytic, amylolytic properties, as well as catalase and peroxidase activities. The Wet cultivation demonstrated to be suitable for the isolation of potential new species belonging to genera Massilia, Algoriphagus, Rheinheimera and Pandoraea. Valuable microbial resources with extensive enzymatic activities were recognized among the psychrophilic (Pantoea brenneri and Serratia sp.), mesophilic (Pandoraea, Massilia, Pseudomonas, Stenotrophomonas, Bacillus and Aeromonas) and thermophilic bacteria (Aeribacullus pallidus and Geobacillus kaustophilus). The experimental strategy developed in this study includes simple investigation tools able to reveal the genetic and enzymatic peculiarities of isolated microorganisms. It can be applied to different kinds of aquatic samples and extreme environments similar to those described in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31:533–538

    Article  CAS  Google Scholar 

  • Allen MJ, Edberg SC, Reasoner DJ (2004) Heterotrophic plate count bacteria—what is their significance in drinking water? Int J Food Microbiol 92:265–274

    Article  Google Scholar 

  • Arnosti C, Bell C, Moorhead DL, Sinsabaugh RL, Steen AD, Stromberger M, Wallenstein M, Weintraub MN (2014) Extracellular enzymes in terrestrial, freshwater, and marine environments: perspectives on system variability and common research needs. Biogeochemistry 117:5–21

    Article  CAS  Google Scholar 

  • Arya M, Joshi GK, Gupta AK, Kumar A, Raturi A (2015) Isolation and characterization of thermophilic bacterial strains from Soldhar (Tapovan) hot spring in Central Himalayan Region, India. Ann Microbiol 65:1457–1464

    Article  CAS  Google Scholar 

  • Bergquist LP, Morgan WH, Saul D (2014) Selected enzymes from extreme thermophiles with applications in biotechnology. Curr Biotechnol 3:45–59

    Article  CAS  Google Scholar 

  • Bollmann A, Lewis K, Epstein SS (2007) Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl Environ Microbiol 73:6386–6390

    Article  CAS  Google Scholar 

  • Bowman JP, Mancuso Nichols C, Gibson JAE (2003) Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 53:1343–1355

    Article  CAS  Google Scholar 

  • Brettar I, Christen R, Hofle MG (2002) Rheinheimera baltica gen. nov., sp. nov., a blue-coloured bacterium isolated from the central Baltic sea. Int J Syst Evol Microbiol 52:1851–1857

    CAS  Google Scholar 

  • Bučková M, Puškarová A, Chovanová K, Kraková L, Ferianc P, Pangallo D (2013) A simple strategy for investigating the diversity and hydrocarbon degradation abilities of cultivable bacteria from contaminated soil. World J Microbiol Biotechnol 29:1085–1098

    Article  Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H, Omar SM, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449–460

    Article  CAS  Google Scholar 

  • Chebeňová V, Berta G, Kuchta T, Brežná B, Pangallo D (2010) Randomly-amplified microsatellite polymorphism for preliminary typing of lactic acid bacteria from bryndza cheese. Folia Microbiol 55:598–602

    Article  Google Scholar 

  • Chen CY, Kuo JT, Cheng CY, Huang YT, Ho IH, Chung YC (2009) Biological decolorization of dye solution containing malachite green by Pandoraea pulmonicola YC32 using a batch and continuous system. J Hazard Mater 172:1439–1445

    Article  CAS  Google Scholar 

  • Chen R, Guo L, Dang H (2011) Gene cloning, expression and characterization of a cold-adapted lipase from a psychrophilic deep-sea bacterium Psychrobacter sp. C18. World J Microbiol Biotechnol 27:431–441

    Article  CAS  Google Scholar 

  • Claiborne A, Fridovich I (1979) Purification of the o-dianisidine peroxidase from Escherichia coli B. Physicochemical characterization and analysis of its dual catalatic and peroxidatic activities. J Biol Chem 254:4245–4252

    CAS  Google Scholar 

  • Ezeji TC, Wolf A, Bahl H (2005) Isolation, characterization, and identification of Geobacillus thermodenitrificans HRO10, an α-amylase and α-glucosidase producing thermophile. Can J Microbiol 51:685–693

    Article  CAS  Google Scholar 

  • Gugliandolo C, Lentini V, Spanò A, Maugeri TL (2012) New bacilli from shallow hydrothermal vents of Panarea Island (Italy) and their biotechnological potential. J Appl Microbiol 112:1102–1112

    Article  CAS  Google Scholar 

  • Hoehler TM, Jørgensen BB (2013) Microbial life under extreme energy limitation. Nat Rev Microbiol 11:83–94

    Article  CAS  Google Scholar 

  • Huey B, Hall J (1989) Hypervariable DNA fingerprinting in Escherichia coli: minisatellite probe from bacteriophage M13. J Bacteriol 171:2528–2532

    CAS  Google Scholar 

  • Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23:35–73

    Article  CAS  Google Scholar 

  • Kämpfer P, Lodders N, Martin K, Falsen E et al (2011) Revision of the genus Massilia La Scola et al. 2000, with an emended description of the genus and inclusion of all species of the genus Naxibacter as new combinations, and proposal of Massilia consociata sp. nov. Int J Syst Evol Microbiol 61:1528–1533

    Article  Google Scholar 

  • Katara J, Deshmukh R, Singh NK, Kaur S (2012) Molecular typing of native Bacillus thuringiensis isolates from diverse habitats in India using REP-PCR and ERIC-PCR analysis. J Gen Appl Microbiol 58:83–94

    Article  CAS  Google Scholar 

  • Kim M, Morrison M, Yu Z (2011) Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. J Microbiol Methods 84:81–87

    Article  CAS  Google Scholar 

  • Kolmakova OV, Gladyshev MI, Rozanov AS, Peltek SE, Trusova MY (2014) Spatial biodiversity of bacteria along the largest Arctic river determined by next-generation sequencing. FEMS Microbiol Ecol 89:442–450

    Article  CAS  Google Scholar 

  • La Scola B, Birtles RJ, Mallet MN, Raoult D (1998) Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 36:2847–2852

    Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackenbrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–148

    Google Scholar 

  • Liz JAZE, Jan-Roblero J, de la Serna JZD, de León AVP, Hernández-Rodríguez C (2009) Degradation of polychlorinated biphenyl (PCB) by a consortium obtained from a contaminated soil composed of Brevibacterium, Pandoraea and Ochrobactrum. World J Microbiol Biotechnol 25:165–170

    Article  CAS  Google Scholar 

  • Maiti B, Raghunath P, Karunasagar I, Karunasagar I (2009) Typing of clinical and environmental strains of Aeromonas spp. using two PCR based methods and whole cell protein analysis. J Microbiol Methods 78:312–318

    Article  CAS  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    Article  Google Scholar 

  • Moquin SA, Garcia JR, Brantley SL, Takacs-Vesbach CD, Shepherd UL (2012) Bacterial diversity of bryophyte-dominant biological soil crusts and associated mites. J Arid Environ 87:110–117

    Article  Google Scholar 

  • Nagy ML, Pérez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 54:244–245

    Article  Google Scholar 

  • Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A, Belanger A, Kanigan T, Lewis K, Epstein SS (2010) Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 76:2445–2450

    Article  CAS  Google Scholar 

  • Pangallo D, Kraková L, Chovanová K, Bučková M, Puškarová A, Šimonovičová A (2013) Disclosing a crypt: microbial diversity and degradation activity of the microflora isolated from funeral clothes of Cardinal Peter Pázmány. Microbiol Res 168:289–299

    Article  CAS  Google Scholar 

  • Pangallo D, Bučková M, Kraková L, Puškárová A, Šaková N, Grivalský T, Chovanová K, Zemánková M (2015) Biodeterioration of epoxy resin: a microbial survey through culture-independent and culture-dependent approaches. Environ Microbiol 17:462–479

    Article  CAS  Google Scholar 

  • Park J, Kerner A, Burns MA, Lin XN (2011) Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS One 6:e17019

    Article  CAS  Google Scholar 

  • Pinar G, Kraková L, Pangallo D, Piombino-Mascali D, Maixner F, Zink A, Sterflinger K (2014) Halophilic bacteria are colonizing the exhibition areas of the Capuchin Catacombs in Palermo, Italy. Extremophiles 18:677–691

    Article  CAS  Google Scholar 

  • Prakash O, Shouche Y, Jangid K, Kostka JE (2013) Microbial cultivation and the role of microbial resource centers in the omics era. Appl Microbiol Biotechnol 97:51–62

    Article  CAS  Google Scholar 

  • Roggenkamp R, Sahm H, Wagner F (1974) Microbial assimilation of methanol induction and function of catalase in Candida boidinii. FEBS Lett 41:283–286

    Article  CAS  Google Scholar 

  • Rompré A, Servais P, Baudart J, de-Roubin MR, Laurent P (2002) Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. J Microbiol Methods 49:31–54

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, vol 3. Cold spring harbor laboratory press, New York, p A1

    Google Scholar 

  • Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17

    Article  CAS  Google Scholar 

  • Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680

    Article  CAS  Google Scholar 

  • Song ZQ, Wang FP, Zhi XY, Chen JQ, Zhou EM, Liang F, Xiao X, Tang SK, Jiang HC, Zhang CL, Dong H, Li WJ (2013) Bacterial and archaeal diversities in Yunnan and Tibetan hot springs China. Environ Microbiol 15:1160–1175

    Article  CAS  Google Scholar 

  • Szabó G, Khayer B, Rusznyák A, Tátrai I, Dévai G, Márialigeti K, Borsodi AK (2011) Seasonal and spatial variability of sediment bacterial communities inhabiting the large shallow Lake Balaton. Hydrobiologia 663:217–232

    Article  Google Scholar 

  • Van Den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218

    Article  Google Scholar 

  • Vaz-Moreira I, Nunes OC, Manaia CM (2012) Diversity and antibiotic resistance in Pseudomonas spp. from drinking water. Sci Total Environ 426:366–374

    Article  CAS  Google Scholar 

  • Wu KS, Jones R, Danneberger L, Scolnik PA (1994) Detection of microsatellite polymorphisms without cloning. Nucleic Acids Res 22:3257–3258

    Article  CAS  Google Scholar 

  • Xu F (2005) Applications of oxidoreductases: recent progress. Ind Biotechnol 1:38–50

    Article  CAS  Google Scholar 

  • Zeigler DR (2014) The Geobacillus paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet? Microbiology 160:1–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Pangallo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 421 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grivalský, T., Bučková, M., Puškárová, A. et al. Water-related environments: a multistep procedure to assess the diversity and enzymatic properties of cultivable bacteria. World J Microbiol Biotechnol 32, 42 (2016). https://doi.org/10.1007/s11274-015-1997-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-015-1997-9

Keywords

Navigation