Skip to main content
Log in

Enhanced antibacterial and anti-quorum sensing activities of triclosan by complexation with modified β-cyclodextrins

  • Short Communication
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Triclosan (TCS), an antimicrobial agent widely used in consumer and medical products, was complexed with 2-hydroxypropyl-β-cyclodextrin (HPβCD) and methyl-β-cyclodextrin (MβCD). Phase-solubility studies indicated that inclusion complexes of 1:1 stoichiometry were formed and allowed estimation of the associated equilibrium constants and free-energy changes. At the highest cyclodextrin concentrations investigated, an almost 20-fold increase in the apparent water solubility of TCS was determined. Susceptibility tests against Escherichia coli and Staphylococcus aureus showed that the TCS–HPβCD and TCS–MβCD complexes exhibited antibacterial properties higher than those of uncomplexed TCS. The two complexes were also found capable of interfering with cell-to-cell communication mechanisms in the C. violaceum model system relying on N-acylhomoserine lactone autoinducers. The inhibitory activity of TCS increased significantly upon inclusion of the drug in HPβCD or MβCD, with small differences between the two CDs. The results obtained suggest that the investigated complexes could be used for treating infections caused by TCS-susceptible pathogens or for preventing biofilm formation on indwelling medical devices such as catheters, stents and orthopedic implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Athanassiou G, Michaleas S, Lada-Chitiroglou E, Tsitsa T et al (2003) Antimicrobial activity of beta-lactam antibiotics against clinical pathogens after molecular inclusion in several cyclodextrins. A novel approach to bacterial resistance. J Pharm Pharmacol 55:291–300. doi:10.1211/002235702649

    Article  CAS  Google Scholar 

  • Bhargava S, Agrawal GP (2008) Preparation and characterization of solid inclusion complex of cefpodoxime proxetil with beta-cyclodextrin. Curr Drug Deliv 5:1–6. doi:10.2174/156720108783330998

    Article  CAS  Google Scholar 

  • Cadieux PA, Chew BH, Knudsen BE, Dejong K et al (2006) Triclosan loaded ureteral stents decrease proteus mirabilis 296 infection in a rabbit urinary tract infection model. J Urol 175:2331–2335. doi:10.1016/S0022-5347(06)00252-7

    Article  Google Scholar 

  • Chiappetta DA, Degrossi J, Teves S, D’Aquino M et al (2008) Triclosan-loaded poloxamine micelles for enhanced antibacterial activity against biofilm. Eur J Pharm Biopharm 69:535–545. doi:10.1016/j.ejpb.2007.11.021

    Article  CAS  Google Scholar 

  • Church D, Elsayed S, Reid O, Winston B et al (2006) Burn wound infections. Clin Microbiol Rev 19:403–434

    Article  Google Scholar 

  • Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046. doi:10.1016/S0032-9592(03)00258-9

    Article  Google Scholar 

  • Grosse PY, Bressolle F, Pinguet F (1997) Methyl-β-cyclodextrin in HL-60 parental and multidrug-resistant cancer cell lines: effect on the cytotoxic activity and intracellular accumulation of doxorubicin. Cancer Chemother Pharmacol 40:489–494. doi:10.1007/s002800050692

    Article  CAS  Google Scholar 

  • Grove C, Liebenberg W, Du Preez JL, Yang W et al (2003) Improving the aqueous solubility of triclosan by solubilization, complexation and in situ salt formation. J Cosmet Sci 54:537–550

    CAS  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. doi:10.1038/nrmicro821

    Article  CAS  Google Scholar 

  • Jayaraman A, Wood TK (2008) Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu Rev Biomed Eng. 10:145–167. doi:10.1146/annurev.bioeng.10.061807.160536

    Article  CAS  Google Scholar 

  • Jones DS, Andrews GP, Gorman SP (2005) Characterization of crosslinking effects on the physicochemical and drug diffusional properties of cationic hydrogels designed as bioactive urological biomaterials. J Pharm Pharmacol 57:1251–1259. doi:10.1211/jpp.57.10.0003

    Article  CAS  Google Scholar 

  • Jones GL, Muller CT, O’Reilly M, Stickler DJ (2006) Effect of triclosan on the development of bacterial biofilms by urinary tract pathogens on urinary catheters. J Antimicrob Chemother 57:266–272. doi:10.1093/jac/dki447

    Article  CAS  Google Scholar 

  • Jones RD, Jampani HB, Lee AS (2010) Triclosan: a review of effectiveness and safety in health care settings. Am J Infect Control 28:184–196. doi:10.1016/S0196-6553(00)90027-0

    Article  Google Scholar 

  • Knetsch MLW, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3:340–366. doi:10.3390/polym3010340

    Article  CAS  Google Scholar 

  • Landini P, Antoniani D, Burgess JG, Nijland R (2010) Molecular mechanisms of compounds affecting bacterial biofilm formation. Appl Microbiol Biotechnol 86:813–823. doi:10.1007/s00253-010-2468-8

    Article  CAS  Google Scholar 

  • Landis SJ (2008) Chronic wound infection and antimicrobial use. Adv Skin Wound Care 21:531–540

    Article  Google Scholar 

  • Lavecchia R, Zuorro A (2009) Experimental study of the inclusion of triclosan in hydroxypropyl-β-cyclodextrins. Chem Eng Trans 17:1083–1088. doi:10.3303/cet0917181

    Google Scholar 

  • Mavromoustakos T, Papadopoulos A, Theodoropoulos E, Dimitriou C et al (1998) Thermal properties of adamantanol derivative and their β-cyclodextrin complexes in phosphatidylcholine bilayers. Life Sci 62:1901–1910. doi:10.1016/S0024-3205(98)00155-6

    Article  CAS  Google Scholar 

  • McClean KH, Winson MK, Fish L, Taylor A et al (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711

    Article  CAS  Google Scholar 

  • Orlik F, Andersen C, Danelon C, Winterhalter M et al (2003) CymA of Klebsiella oxytoca outer membrane: binding of cyclodextrins and study of the current noise of the open channel. Biophys J 85:876–885. doi:10.1016/S0006-3495(03)74527-5

    Article  CAS  Google Scholar 

  • Paulidou A, Maffeo D, Yannakopoulou K, Mavridis IM (2008) Crystal structure of the inclusion complex of the antibacterial agent triclosan with cyclomaltoheptaose and NMR study of its molecular encapsulation in positively and negatively charged cyclomaltoheptaose derivates. Carbohydr Res 343:2634–2640. doi:10.1016/j.carres.2008.06.004

    Article  CAS  Google Scholar 

  • Qian L, Guan Y, Xiao H (2008) Preparation and characterization of inclusion complexes of a cationic β-cyclodextrin polymer with butylparaben or triclosan. Int J Pharm 357:224–251. doi:10.1016/j.ijpharm.2008.01.018

    Article  Google Scholar 

  • Rasmussen TB, Givskov M (2006) Quorum sensing inhibitors: a bargain of effects. Microbiology 152:895–904. doi:10.1099/mic.0.28601-0

    Article  CAS  Google Scholar 

  • Stewart MJ, Parikh S, Xiao G, Tonge PJ et al (1999) Structural basis and mechanism of enoyl reductase inhibition by triclosan. J Mol Biol 290:859–865. doi:10.1099/mic.0.28601-0

    Article  CAS  Google Scholar 

  • Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1753. doi:10.1021/cr970022c

    Article  CAS  Google Scholar 

  • Veiga MD, Merino M, Cirri M, Maestrelli F, Mura P (2005) Comparative study on triclosan interactions in solution and in the solid state with naturally and chemically modified cyclodextrins. J Incl Phenom Macro 53:77–83. doi:10.1007/s10847-005-1047-6

    Article  CAS  Google Scholar 

  • Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938. doi:10.1099/mic.0.2007/012856-0

    Article  CAS  Google Scholar 

  • Worthington RJ, Richards JJ, Melander C (2012) Small molecule control of bacterial biofilms. Org Biomol Chem 10:7457–7474. doi:10.1039/c2ob25835h

    Article  CAS  Google Scholar 

  • Yang L, Liu Y, Wu H, Song Z, Høiby N, Molin S, Givskov M (2012) Combating biofilms. FEMS Immunol Med Microbiol 65146–65157. doi:10.1111/j.1574-695X.2011.00858.x

  • Zuorro A, Fidaleo M, Lavecchia R (2010) Solubility enhancement and antibacterial activity of chloramphenicol included in modified beta-cyclodextrins. Bull Korean Chem Soc 31:3460–3462. doi:10.5012/bkcs.2010.31.11.3460

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Lavecchia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fidaleo, M., Zuorro, A. & Lavecchia, R. Enhanced antibacterial and anti-quorum sensing activities of triclosan by complexation with modified β-cyclodextrins. World J Microbiol Biotechnol 29, 1731–1736 (2013). https://doi.org/10.1007/s11274-013-1335-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1335-z

Keywords

Navigation