Skip to main content

Advertisement

Log in

Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite production

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The present study aimed to isolate actinobacteria from soil samples and characterized them using molecular tools and screened their secondary metabolites for antimicrobial activities. Thirty-nine strains from four different location of Barrientos Island, Antarctica using 12 types of isolation media was isolated. The isolates were preceded to screening of secondary metabolites for antimicrobial and antifungal activities. Using high-throughput screening methods, 38% (15/39) of isolates produced bioactive metabolites. Approximately 18% (7/39), 18% (7/39), 10% (4/39) and 2.5% (1/39) of isolates inhibited growth of Candida albicans ATCC 10231T, Staphylococcus aurues ATCC 51650T, methicillin-resistant Staphylococcus aurues (MRSA) ATCC BAA-44T and Pseudomonas aeruginosa ATCC 10145T, respectively. Molecular characterization techniques like 16S rRNA analysis, Enterobacterial repetitive intergenic consensus—polymerase chain reaction (ERIC-PCR), Random amplified polymorphic DNA (RAPD) and composite analyses were used to characterize the actinobacteria strains. Analysis of 16S rRNA sequences is still one of the most powerful methods to determine higher taxonomic relationships of Actinobacteria. Both RAPD and ERIC-PCR fingerprinting have shown good discriminatory capability but RAPD proved to be better in discriminatory power than ERIC-PCR. Our results demonstrated that composite analysis of both fingerprinting generally increased the discrimination ability and generated best clustering for actinobacteria strains in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aislabie JM, Jordan S, Barker GM (2008) Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma 144:9–20

    Article  CAS  Google Scholar 

  • Arasu VM, Duraipandiyan V, Agastian P, Ignacimuthu S (2008) Antimicrobial activity of Streptomyces spp. ERI-26 recovered from Western Ghats of Tamil Nadu. J Mycol Med 18:147–153

    Article  Google Scholar 

  • Atlas RM (1993) Handbook of microbiological media. CRC Press, Boca Raton

  • Baltz RH (2006) Marcel Faber roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J Ind Microbiol Biotechnol 33:507–513

    Article  CAS  Google Scholar 

  • Barakate M, Ouhdouch Y, Oufdou K, Beaulieu C (2002) Characterization of rhizospheric soil streptomycetes from Moroccan habitats and their antimicrobial activities. World J Microbiol Biotechnol 18:49–54

    Article  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58(1):1–26. doi:10.1038/ja.2005.1

    Article  Google Scholar 

  • Bredholt H, Fjaerik E, Johnsen G, Zotchev SB (2008) Actinomycetes from sediments in the Trondheim fjord, Norway: diversity and biological activity. Mar Drugs 6:12–24

    Article  Google Scholar 

  • Bull AT, Stach JE (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15:491–499

    Article  CAS  Google Scholar 

  • Bull AT, Stach JEM, Ward AC, Goodfellow M (2005) Marine actinobacteria: perspectives, challenges, future directions. Antonie van Leeuwenhoek 87:259–276

    Article  Google Scholar 

  • Chansiropornchai N, Ramasoota P, Bangtrakulnonth A, Sasipreeyajan J, Svenson SB (2000) Application of randomly amplified polymorphic DNA (RAPD) analysis for typing avian Salmonella enterica subsp enterica. FEMS Immunol Med Microbiol 29:221–225

    Article  Google Scholar 

  • Chen H, Hong K, Zhuang L, Zhong QP (2006) Growth characteristics and fermentation condition optimization of mangrove actinomycete strain 0616167. Microbiology 33:16–20

    CAS  Google Scholar 

  • Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  Google Scholar 

  • Ellis-Evans JC, Walton D (1990) The process of colonization in Antarctic terrestrial and freshwater ecosystems Proc NIPR Symp. Polar Biol 3:151–163

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–789

    Article  Google Scholar 

  • Garcia GD, Romero MF, Perez BJ, Garcia DT (1999) Thiodepsipeptide isolated from a marine actinomycete WO9527730. Patent number: US5681813

  • Goshi K, Uchidam A, Lezhava A, Yamasaki M (2002) Cloning and analysis of the telomere and terminal inverted repeat of the linear chromosome of Streptomyces griseus. J Bacteriol 184:3411–3415

    Article  CAS  Google Scholar 

  • Hayakawa M, Ohara Y (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509

    Article  CAS  Google Scholar 

  • Hong K, Xiao C (2006) A rapid method for detection of biological activity of anti- yeast-like pathogen. China Patent ZL03128096

  • Hong K, Gao AH, Xie QY, Gao H, Zhuang L, Lin HP, Yu HP, Li J, Yao XS, Goodfellow M, Ruan JS (2009) Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar Drugs 7:24–44

    Article  CAS  Google Scholar 

  • Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26:2465–2466

    CAS  Google Scholar 

  • Ivantiskaya LP, Singal SM, Bibikova MV, Vostrov SN (1978) Direct isolation of Micromonospora on selective media with gentamicin. Antibiotiki 23:690–692

    Google Scholar 

  • Kimura MA (1980) Simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Küster E, Williams ST (1964) Media for the isolation of Streptomycetes: starch casein medium. Nature 202:928–929

    Article  Google Scholar 

  • Lam KS (2007) New aspects of natural products in drug discovery. Trends Microbiol 15:279–289

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

  • Learn-Han L, Yoke-Kqueen C, Shiran MS, Sabrina S, Noor Zaleha AS, Sim JH, Chai-Hoon K, Son R (2009) Molecular characterization and antimicrobial resistance profiling of Salmonella enterica subsp. enterica isolated from ‘Selom’ (Oenanthe stolonifera). Int Food Res J 16:191–202

    Google Scholar 

  • Lim H, Lee KH, Hong C-H, Bahk G-J, Choi WS (2005) Comparison of four molecular typing methods for the differentiation of Salmonella spp. Int J Food Microbiol 105:411–418

    Article  CAS  Google Scholar 

  • Marinelli F, Brunati M, Sponga F, Ciciliato I, Losi D, VanTrappen S, Mergaert J, Swings J, Göttlich E, deHoog S, Luis Rojas J, Genilloud O (2004) Biotechnological exploitation of heterotrophic bacteria and filamentous fungi isolated from benthic mats of Antarctic lakes. In: Kurtböke I, Swings J (eds) InMicrobial genetic resources and biodiscovery. Queensland Complete Printing Services, Queensland, pp 163–184

    Google Scholar 

  • Moncheva P, Tishkov S, Dimitrova N, Chipeva V, Nikolova SA, Bogatzevska N (2000–2002) Characteristics of soil actinomycetes from Antarctica. J Cult Collect 3:3–14

    Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  Google Scholar 

  • Nimnoi P, Pongsilp N, Lumyong S (2010) Endophytic actinomycetes isolated from Aquilaria crassna Pierre ex Lec and screening of plant growth promoters production. World J Microbiol Biotechnol 26:193–203

    Article  CAS  Google Scholar 

  • Nolan R, Cross T (1988) Isolation and screening of actinomycetes. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic Press, London, pp 1–32

    Google Scholar 

  • Okazaki T, Naito A (1986) Studies on actinomycetes isolating from Australian soil. In: Szabo G, Biro S, Goodfellow M (eds) Biological biochemical and biomedical aspects of actinomycetes. Akademiai Kiado, Budapest, pp 739–741

    Google Scholar 

  • Pisano AM, Sommer JM, Lopez MM (1986) Application of pretreatment for the isolation of bioactive actinomycetes from marine sediments. Appl Microbiol Biotechnol 25:285–288

    Article  Google Scholar 

  • Poornima R, Ponmurugan P (2006) Studies on actinomycetes diversity in Namakkal and Erode districts of Tamilnadu, India. National seminar on Emerging trends in Industrial Biotechnology. Bioexpo’06. Dept. of Industrial Biotechnology, Vivekanandha College of Engineering for Woman, 17–18 Feb 2006

  • Rojas JL, Martín J, Tormo JR, Vicente F, Brunati M, Ciciliato I, Losi D, Van Trappen S, Mergaert J, Swings J, Marinelli F, Genilloud O (2009) Bacterial diversity from benthic mats of Antarctic lakes as a source of new bioactive metabolites. Mar Genomics 2:33–41

    Article  Google Scholar 

  • Saadoun I, Gharaibeh R (2003) The Streptomyces flora of Badia region of Jordan and its potential as a source of antibiotic-resistant bacteria. J Arid Environ 53:365–371

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4, molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Taton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006a) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289

    Article  CAS  Google Scholar 

  • Taton A, Grubisic S, Ertz D, Hodgson DA, Piccardi R, Biondi N, Tredici M, Mainini M, Losi D, Marinelli F, Wilmotte A (2006b) Polyphasic study of Antarctic cyanobacterial strains. J Phycol 42:1257–1270

    Article  CAS  Google Scholar 

  • Thakur D, Yadav A, Gogoi BK, Bora TC (2007) Isolation and screening of Streptomyces in soil of protected forest areas from the states of Assam and Tripura, India, for antimicrobial metabolites. J Mycol Med 17:242–249

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Tindall BJ (2004) Prokaryotic diversity in the Antarctic: the tip of the iceberg. Microb Ecol 47:271–283

    Article  CAS  Google Scholar 

  • Van Trappen S, Mergaert J, Van Eygen S, Dawyndt P, Cnockaert MC, Swings J (2002) Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten Antarctic lakes. Syst Appl Microbiol 25:603–610

    Article  Google Scholar 

  • Versalovic LJ, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831

    Article  CAS  Google Scholar 

  • Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 12:374–385

    Article  Google Scholar 

  • Wawrik B, Kutliev D, Abdivasievna UA, Kukor JJ, Zylstra GJ, Kerkhof L (2007) Biogeography of actinomycete communities and type II polyketide synthase genes in soils collected in New Jersey and Central Asia. Appl Environ Microbiol 73:2982–2989

    Article  CAS  Google Scholar 

  • Wellington EMH, Stackebrandt E, Sanders D, Wolstrup J, Jorgensen DOG (1994) Taxonomic status of Kitasatosporia and proposed unification with Streptomyces on the basis of phenotypic and 16S rRNA nalysis and emendation of Streptomyces Waksman and enrici 1943, 339AL. Int J Syst Bacteriol 42:156–160

    Article  Google Scholar 

  • Williams ST, Davies FL (1965) Use of antibiotics for selective isolation and enumeration of actinomycetes in soil. J Gen Microbiol 38:251–261

    CAS  Google Scholar 

  • Williams ST, Lanning S, Wellington EMH (1984) Ecology of actinomycetes. In: Goodfellow M, Mordarski M, Williams ST (eds) The biology of the actinomycetes. Academic Press, London, pp 481–528

    Google Scholar 

  • Woo PCY, Lau SKP, Huang Y, Yuen K-Y (2006) Genomic evidence for antibiotic resistance genes of actinomycetes as origins of antibiotic resistance genes in pathogenic bacteria simply because actinomycetes are more ancestral than pathogenic bacteria. Med Hypotheses 67:1297–1304

    Article  CAS  Google Scholar 

  • Yoke-Kqueen C, Noorzaleha AS, Learn-Han L, Son R, Sabrina S, Jiun-Horng S (2008) Comparison of PCR fingerprinting techniques for the discrimination of Salmonella enterica subsp. enterica serovar Weltevreden isolated from indigenous vegetables in Malaysia. World J Microbiol Biotechnol 24:327–335

    Article  Google Scholar 

  • Yu JS, Hong K, Lin HP, Yuan GJ (2008) Optimization study on fermentative medium for precursor of daptomycin A21978C produced by Streptomyces roseosporus NRRL 11397. J Anhui Agric Sci 36:7974–7976

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Instituto Antártico Ecuatoriano (INAE) for their support during the XI Ecuadorian Antarctic Expedition to “Pedro Vicente Maldonado” Research Station, Greenwich Island, South Shetlands Islands. The authors are thankful to Gao Zhu-Fen and Li Xiao-Hui for laboratory assistance. This work was supported under the Malaysia Antarctic Research Program, Academy of Sciences Malaysia and Universiti Putra Malaysia Research Universiti Grant Scheme (05-01-11-1219RU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoke-Kqueen Cheah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, LH., Cheah, YK., Mohd Sidik, S. et al. Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite production. World J Microbiol Biotechnol 28, 2125–2137 (2012). https://doi.org/10.1007/s11274-012-1018-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1018-1

Keywords

Navigation